
Privacy-aware Social Music Playlist Generation
Felix Beierle, Kai Grunert, Sebastian Göndör, Axel Küpper

Service-centric Networking
Telekom Innovation Laboratories / Technische Universität Berlin

Berlin, Germany
{beierle, kai.grunert, sebastian.goendoer, axel.kuepper}@tu-berlin.de

Abstract—Two of the most popular applications of smart-
phones are online social networking and playing back music.
In this paper, we present the design and implementation of a
prototype that combines those usages by creating an architecture
that allows the generation and playback of group music playlists
that are based on the musical taste of individual guests attending
a meeting. In our architecture, we utilize automatically collected
data on smartphones for the automatized generation of group
music playlists. We follow the idea of utilizing context data
in a preprocessing step to generate a group music profile
for the recommendation process that generates a group music
playlist. For designing such an architecture, we consider current
discussions on privacy, data ownership, and data control.

I. INTRODUCTION

Nowadays, the smartphone is a highly potent computing
device that users carry with them at almost all times. It is often
used for media consumption, especially listening to music [1].
The smartphone is a highly personalized device with usually
just one single user. At the same time, the smartphone is also
a very social device, as it is also often used for online social
networking, messaging, sharing pictures, etc. We believe that
those two aspects can be combined. The tracking of individual
smartphone usage can be leveraged for group scenarios. In the
case of listening to music, individual taste can be recorded on
the smartphone and used in group scenarios to create a group
music playlist, considering the taste in music of each group
member that is currently present at the same location.

To infer the musical taste of a single user, context data can
help with filtering mechanisms: music listened to in a specific
context might not be relevant when creating a taste model of a
group. Previous work exists regarding the collection of context
data in connection with data about music users listened to [2],
[3]. The prototypically implemented applications are mostly
based on explicit annotations by the user. Often criticized is the
effort that is necessary when manually annotating such data.
In the last years, the number and quality of physical sensors
in a smartphone as well as the availability of public APIs
and SDKs has substantially increased. These developments
enable the user and her device to easily and automatically
determine context information with respect to a multitude of
aspects. At the same time, when designing mobile applications
with increased sensor usage and querying of APIs, battery
consumption has to be taken into account.

With these developments, we are able to automatize most of
the general workflow of our group music playlist generation
system. Combining the possibility to automatically determine

the user’s context and utilizing the smartphone for social group
scenarios, we envision meeting scenarios – formal or informal
gatherings of groups of people, with music playing, e.g.,
a party: Users permanently and unobtrusively collect music
and context data on their smartphones. When gathering for a
meeting the collected data is consolidated, pre-processed, and
a recommender system can generate a music playlist based on
the taste of all attending guests. Current technology already
allows for a very high degree of automation in such a system.
Furthermore, our system offers the possibility to research other
areas, such as group recommendations in general or context-
based recommender systems in specific.

When designing such a group music playlist generation
system, and collecting music playing data and context data,
we are dealing with private data about the user, e.g., her
location. Merriam-Webster defines ”privacy” as ”the state of
being apart from company or observation” and ”freedom from
unauthorized intrusion.” [4] In the context of web and mobile
applications, we regard an application as privacy-aware when
the user has the ability to choose what information she wants to
share with other users or with service providers. Recent reports
(e.g., [5]) can give us insight into systematically approaching
the design of a privacy-aware system. In general, we argue that
distributed systems, which allow users to choose their service
provider or set up their own host, in general can provide more
privacy and help better ensure the concept of data ownership.

We designed a highly automatized system collecting data
about music that was played and enriching it with context data,
all without user interaction. This data is kept locally on the
mobile device. The user can analyze it and decide what parts
she wants to transmit it to a server. We envision a meeting
scenario, where she can decide to send (parts of) her data to
a meeting host to help generate a group music playlist for all
meeting guests.

Our main contribution is the design and implementation of
the vision of highly automatized computing in the social group
scenario of music playlist generation, and designing such a
system with the concepts of privacy, data ownership, and data
control in mind. After discussing related work, we present our
prototype, evaluate it, conclude, and point out future work.

II. RELATED WORK

In this section, we refer to related work in the fields of
privacy, data ownership, and data control, as well as context
data and music-related applications that utilize context data.



A. Privacy, Data Ownership, and Data Control

So far, such group scenarios are most commonly realized
with services like Facebook. Especially in such online social
network scenarios, users have major privacy concerns. The
users’ data might be used as the basis for a service operator’s
business model, while users did not intend to share their data
to that extent [6]–[8].

In Europe and especially Germany, discussions about pri-
vacy and data ownership are very prominent. In a recent report,
the concept of data ownership and data control was thoroughly
discussed with respect to cloud services [5]. The idea is that
a person’s private data should always be available for her so
that she can access and change it. Servers that store the data
should use encryption and deal with the data confidentially.
Another related concept is the one of data frugality. Only data
that will be used for a specific purpose should be collected,
it should only be stored for that purpose, and not be used for
other purposes [5]. In the end, there also has to be made some
compromise between usability and security.

Another concept to enhance user privacy is the combination
of data separation and data frugality [9]: transmitting only the
data that is required to use a service as well as using different
service providers for different services bring the advantage
that the multitude of external service providers cannot derive
a holistic profile of a user. In the context of application
development, this gives the requirement to build software just
for a specific task with well-defined boundaries and to restrict
the data collection to just the data needed for the specific task.

B. Context Data

Context is something that characterizes an entity that is
relevant to the user or application [10]. Context thus is
application-dependent: For an indoor mobile tour guide for
example, weather should not be considered as context [10].

Yurur et al. conclude that privacy and security are open
issues, and that users can feel constantly monitored by apps
tracking context information [11]. Regarding the acquisition of
context data, the authors divide sensors into three categories:

• Physical Sensors capture physical data, e.g., GPS for
location or accelerometer for activity

• Virtual Sensors from software application and/or service,
e.g., manually set location or computation power of the
device

• Logical Sensors are a combination of physical and vir-
tual sensors with additional information through various
sources like databases or log files

The authors divide context into four categories:
• Device Context: net connectivity, communication cost
• User Context: profile, geographic position, neighbors,

social situation
• Physical Context: temperature, noise level, light intensity,

traffic conditions
• Temporal Context: day, week, month, season, year
Using Dey’s definition of context, for a highly automatized

music application, context is anything that might influence the

user’s choice of music. Using Yurur’s definition, the music
listened to can be viewed as a context for other applications,
music listening then being, e.g., part of the user context. Thus,
the part of our application that tracks the music listened to can
effectively offer context data as a logical sensor.

C. Music Applications and Context Data

Flytrap is described as a ”group music environment” [12].
The music users listen to on their computer is tracked. Uti-
lizing RFID badges, the presence of other users is detected.
A group playlist is generated and the next track is decided
by a voting mechanism. Since the publication of the paper
in 2002, technological advances and especially the advent of
smartphones allow for more complexity and automation.

SocialFusion follows the idea of collecting context data
from multiple sources: online social networks, mobile phones
and nearby sensors [13]. For SocialFusion, one of the major
challenges described is the mining of data that is collected. The
general process is collecting any available data and analyz-
ing/mining that data for relevant information later, depending
on the used application. SocialFusion furthermore follows the
idea of individual and group recommendations based on the
results that the data mining outputs. The key difference in our
approach is that, instead of mining existing data that might
be related, we specifically collect data in order to use it in a
recommender system that creates group music playlists.

Mobile Music Genius aims to be a music player on a mobile
device that automatically chooses a song according to the
user’s context [14]. Here, context is used to predict the taste
of a single user, instead of for a group of users.

Baltrunas et al. deal with the prediction of the best context
for listening to a particular song [2]. For this, context data is
collected explicitly with a graphical user interface. The user
enters a rating for the song, activity, weather, mood, and most
suitable time for listening to the song. In our application, all
of that context data (with the exception of mood) is collected
unobtrusively in the background and without disrupting the
regular listening experience. In another paper about the collec-
tion of context data [3], activity and mood had to be annotated
by the user, while some other context data was collected by
the sensors of Android smartphones.

In [15], we presented the concept of using context data
to create an additional layer in online social networking
scenarios in order to connect people with similar contexts. The
implementation presented in this paper follows the concept of
obtaining context data on smartphones. This collected data
could be used to connect people with similar tastes in music.

III. DESIGN AND IMPLEMENTATION

In this section, we detail the requirements for our system
before describing the role model. We then describe the compo-
nents of our architecture and explain the three main processes.

A. Requirements

As motivated in the introduction with the discussions about
privacy and data ownership, a general requirement is (r1)



privacy. In order to discuss privacy for our scenario, in the
following, we will introduce the role model of our system.
To materialize the vision of highly automatized ubiquitous
computing, our second general requirement is to have a high
degree of (r2) automation that allows us to keep the necessary
user interaction to a minimum. There is another requirement
especially for the mobile component: the application should
(r3) not significantly drain the battery, which is in general an
important aspect for any mobile application.

B. Role Model

In Figure 1, we give the role model of our system, including
data flows. In the center, there is the meeting host. The meeting
guest sender is the role of an attending guest that sends her
music and context data. The meeting host uses three types of
external providers. To the music metadata service provider, she
sends music data in order to receive meta-data about the music,
e.g., genre. To the music playlist recommendation service
provider, the meeting host sends a group music profile that
she created. By utilizing a recommendation service, the host
ensures to create a playlist containing new music previously
not listened to by the attendees. To the music player service
provider, she sends the (post-filtered) group music playlist
she received from the music playlist recommendation service
provider. The meeting guest receiver is an attending guest in
the role of a listener of the played music. By hearing the music,
she can know the generated playlist.

In the introduction, we defined privacy as the ability of the
individual to choose what information she wants to share with
other users or with service providers. One part of privacy is
the data a user actively shares with another user or service
provider. Another aspect concerning privacy is when individual
users are (unintentionally) identifiable (or traceable) through
data they share. To encompass all potential aspects and data
flows, our role model will help with the evaluation of the
privacy of our system.

C. Mobile Component

Figure 2 depicts the components of the system. On the top,
there are multiple users with their smartphones. The installed
meeting application contains one main component – the Data
Collection Engine. It is responsible for the unobtrusive and
continuous collection of music information of played songs.
Additionally, in the background, it accesses different sensors
and webservices to obtain and store context data.

There are two types of collected data: music data and
context data. Music data comprises the artist, track, and album.
This data is generally enough to uniquely identify a song.
Other music meta-data like genre, tempo, etc. can be acquired
later. The other collected data describes the context in which
a user listened to a song. Using the taxonomy of [11], we
consider the device context somewhat uninteresting, as net
connectivity and communication cost might not significantly
influence the choice of music. Regarding the user context, the
geographic position is tracked. Neighbors or social situations
could later be inferred when the data is sent to the server

group music playlist

group music profile

music data

music & context data

Meeting Guest 
Sender

Meeting Host

Music Metadata
Service Provider

Music Player
Service Provider

Music Playlist 
Recommendation
Service Provider

music meta-data

music player widget

group music playlist

Meeting Guest 
Receiver

playback music

Fig. 1. Role model of the system

Meeting Host Server

Web Server

Recommender Logic Music Metadata 

Service 

Provider

Music Player 

Service 

Provider

Music Playlist 

Recommendation 

Service Provider

Meeting Host

Meeting

Post-Processor 

Playlist 

Music Data 

Preprocessor/ 

Consolidator

:Android Smartphone

:Meeting App

:Data Collection 

Engine

:Android Smartphone

:Meeting App

:Data Collection 

Engine

:Meeting Guest :Meeting Guest

Fig. 2. Components of the architecture



component. Regarding the physical context, we prototypically
implemented the collection of current activity1 and weather2,
data that related work also considered of importance with
respect to the choice of music [2], [3]. For the physical activity,
the most likely state returned by the SDK is stored. The
possible states are: sedentary, walking, running, biking, in car,
random, none. As for the temporal context, the date and time
a song was played is tracked.

D. Server Component

In the center of Figure 2, there is the server component.
This component is used to create meetings, automatically
generate group music playlists and to offer the possibility to
play back music. A web server provides a website to the host.
The website is the interface to the meeting host for creating
meetings and playing back music.

The Recommender Logic module is responsible for creating
a group music playlist out of the attendees’ data. We view the
process of generating a group music playlist as a recommender
system task. In general, for such a group recommendation task,
there are generally two approaches [16]:

• consolidate profiles into one group profile
• consolidate individual recommendations to one group

recommendation
Using an external music recommendation system, the first
option offers the individual guest more privacy: when the
individual profile data is preprocessed and consolidated in
order to generate a group music profile, only the created
group music profile has to be given to the music playlist
recommendation service provider. The individual user is thus
less identifiable or traceable.

E. External Services

In our prototypical implementation, we used three types
of external service providers. As a Music Metadata Service
Provider, returning, e.g., genre of a music track, we used
Gracenote3. As a Music Playlist Recommendation Service
Provider, for generating a playlist from a group music profile,
we used The Echo Nest4. The music player is integrated in
our website via JavaScript, in our prototype we used Deezer5.

F. Processes

This section explains the three main processes of the system:
the meeting creation, the registration, and the meeting itself.
Furthermore, the straightforward process of collecting music
and context data on the mobile device is the foundation for
the generation of the collaborative playlist. An extension to
the current implementation could be to have an on/off switch
for tracking and to offer some filtering that disables tracking
for certain times, locations, contexts, or genres.

1Via the Intel Context Sensing SDK, https://software.intel.com/en-us/
context-sensing-sdk

2Via OpenWeatherMap, http://openweathermap.org/
3http://www.gracenote.com/
4http://the.echonest.com/
5http://www.deezer.com/

For the meeting creation, the meeting host installs the
software on her own home server. In the web front-end, the
host can specify date, location and (optionally) a music genre
of the meeting. A website is generated for the meeting, which
contains a music player widget from an external provider,
which at the time of the meeting will include the continuously
updated group playlist. Furthermore, the website contains a
QR code for distributing to potential meeting guests.

In the registration process, the meeting guest scans the QR
code which is a URL of the REST interface of the meeting
host server. The application uses this URL to request some
information from the server, like date, location, and genre of
the meeting. The user then decides if she is interested in the
meeting. She can decide to not inform the meeting host and
not send any data. This would be the most private setting, but
the attendee would not be enable to participate in the creation
of the group playlist. If the guest decides to attend and inform
the meeting host, she can decide what data – if any at all – she
later wants to send to the meeting host. The implementation
so far allows for a manual song based filtering that allows the
user to remove tracks that she does not want to send to the
host. An extension to that would be to enable the user to filter
music and context data by location, context, genre, or time to
remove unwanted entries more easily. When deciding to send
any data to the meeting host, the guest’s device receives a
unique user id (unique for the event) in order to later avoid
guests sending their data multiple times.

Afterwards, when being registered for a meeting, a geofence
is activated in the system’s location API, so the application
finds out automatically if the guest is at the meeting location.
Geofences are virtual boundaries for geographical areas and
are used to check whether a device is entering, dwelling
inside, or exiting such an area [17], [18]. The geofence is
derived from the location of the meeting and a radius the host
indicated when setting up the meeting. Henceforth, the system
continuously checks if the user has entered the geofence.
The general process of a meeting is illustrated in the BPMN
notation [19] in Figure 3. Originally created for business
processes, we believe BPMN is also a useful generic tool
to describe software processes and interactions between users
and service providers. This geofencing process is shown as the
expanded sub-process ”Meeting-entering scanning” in the top
left of Figure 3. If the user enters the geofence of a meeting,
the application verifies that the time and date are correct. If
not, the process jumps back and continues checking for the
geofence. If the location and date correspond to the meeting
information, the application notifies the meeting host server
and sends the filtered music and context data. On the user
side, the process continues with scanning, in order to check if
the guest leaves the meeting. If this happens, the application
notifies the server.

When the meeting host server receives attendees’ data, the
intermediate message event ”Music&context data” attached
to the boundary of the data reception activity is called and
leads to the process for creating the collaborative playlist. The
process starts with the preprocessing of the data. It is depicted



Event

M
ee

tin
g 

G
ue

st

M
ee

tin
g 

Ap
pl

ic
at

io
n

Meeting Application

Geofence is
activated

Meeting-entering scanning

Scan for
geofence ENTER

notification

Loop until geofence
is entered

Check time and
date

Enter
meeting

Music&Context
data

Loop until
geofence/meeting
is left

Leave
meeting

Scan for
geofence EXIT

notification

M
ee

tin
g 

H
os

t

Se
rv

er

Server

Data reception

Loop until the
end of the
meeting

Request a
recommended

playlist
Playlist post-
processing

Update
existing

playlist on
website

Remove music
of the leaving

guest Group
music
profile

Meeting
created

Preprocess /
Consolidate the data
of all present guests

Recommended
playlist

Music&Context
data

Leave
meeting

Music Playlist Recommendation
Service Provider

Music Metadata Service Provider

The meeting has not started yet

Meeting has started

Fig. 3. The general process of an event.

as a collapsed sub-process, observable by the plus sign inside
the small square at the bottom center of the activity. Multiple
steps are executed:

• Augmentation of the music data with useful meta data
(e.g. genre).

• Normalizing the music data of one guest over all atten-
dees: the server has to limit the influence of users with a
very high amount of played tracks and a high track count
in relation to a user with lower numbers.

• Filtering/Weighting of the music data. Here, the context
data and the music metadata is used to filter and weigh
music to, e.g., discard music listened to early in the
morning or while exercising.

• Consolidation of the music data of every guest to a build
a group music profile. The result is a list that represents
the preprocessed music data of all meeting attendees.

The server uses the resulting group music profile in the next
step and hands it over to an external playlist recommendation
service provider, which returns a recommended playlist. To
avoid playing the same song or artist twice in a short amount
of time, this playlist is post-processed. When this activity is
finished, the website is updated, so the host is able to play
the recommended songs based on the taste of the current
attendees.

Looking at the ”Data reception” activity in Figure 3, we can
see that the process for creating the recommended playlist is
permanently repeated for new guests that enter the meeting.
The attached ”Music&Context data” message event is non-
interrupting (denoted by the dashed circles around the event).
It creates a new parallel process which results in the generation

of the playlist. The ”Data reception” process is continued until
the loop ends, i.e., when the meeting is over.

When a guest leaves the meeting, the message event ”Leave
meeting” (attached to ”Data reception”) is triggered. The
started process flow removes the guest’s music data from the
group music profile. Afterwards, the process flow is merged
with the process for generating the recommended playlist.

IV. EVALUATION

In this section, we evaluate our system according to the
requirements we established.

A. Requirement 1: Privacy

Starting from our definition of privacy, in designing our
system, we made sure that the user can choose what data
about her is shared with other users and service providers.
Looking at the meeting guest and her mobile application, we
first examine the music and context data collection: when
collecting context data, a location or weather provider will
most likely not be able to distinguish between regular querying
of location and weather data by other applications – especially
because location and weather is highly typical data that is
frequently queried. The collection of data of physical sensors
and music data (assuming playing locally available music files)
is completely done offline.

Looking at Table I, the ”Guest Sender” role as the attending
guest that sends data to the meeting host has all music data
and context data. She can generate filtered lists of both those
data sets before sending.

We designed our system so that the meeting host can be
anybody that wants to host a meeting. She installs the server



component software and can start to create meetings. By this
design, we generally assume a high degree of trust between
meeting host and meeting guests. The meeting host receives
the attendee’s music and context data. She communicates with
three external service providers. The context data remains with
the host and are not send to any service providers.

The first service provider contacted is the music metadata
service provider (MMSP in Table I). The filtered music data
is sent to the server in order to receive additional information
about the music, e.g., genre. By receiving the data, the
service provider can infer something about the musical taste
of the attending guests. To improve the privacy of host and
guests, a local database containing music information could be
introduced to remove the need to query an external service.
The second service provider contacted is the music playlist
recommendation service provider (MPRSP in Table I). Here,
the meeting host sends the locally created group music profile.
By sending a group music profile, for the service provider, it
is indistinguishable if the request originated for one user or
for a group. Individual users will most likely not be traceable
in such group music profiles. The service provider can (and
is supposed to by the logic of our system) infer the musical
taste by this profile and returns a recommended playlist. To
have more privacy for host and guests, a local recommender
system could be implemented, although it might be hard to
compete with services like The Echo Nest. The third service
provider contacted is the music player service provider (MPSP
in Table I). The meeting host sends the post-processed playlist.
By offering music streaming for the requested songs, the music
player service provider knows the musical taste of the group.
In order to increase the level of privacy for host and guests
here, only locally available music files could be played.

From the perspective of the ”Guest Sender” role, by looking
at the checked boxes in Table I, the privacy implications
are indicated. The host has to be trusted with the filtered
music and context data. The privacy implications of the three
service providers are described above. The last step in the
process of hosting a meeting is the actual playback of the
music. At this step, the ”Guest Receiver” role ”receives” the
playlist by listening to it. This is another privacy implication
to be considered by the Guest Sender, as she might want to
hide her musical taste. In the general case of a meeting with
several attendees, it will be virtually impossible to make out
a correlation between a particular song or taste in music and
an individual guest. The higher the number of attendees, the
more unlikely it is to make out such correlations. For very low
numbers of attending guests, there are some edge cases. If very
few attendees are present and a guest is arriving or leaving,
the playlist should not change immediately in order to not
give an indication of the individual’s taste in music that could
be considered private. To avoid this problem, the process of
updating the playlist can be done in bulk after several people
entered/left, in order to hide an individual’s taste in a group
of people. If there are zero (or one, if the host is also a guest)
attendees, the genre setting of the meeting can still make it
possible to play back music.

Overall, the employed mechanisms of filtering data on the
smartphone before sending, sending limited data to service
providers and considering edge cases with few attendees leave
the user in control of her data and avoid unintentional sharing
of private data. In future work, the proper way of presenting
the user the information given in Table I will be researched. To
lower the level of trust needed towards the meeting host, some
parts of the preprocessing of the data could be done on the
smartphone. This way, the meeting guest’s privacy could be
improved because she does not send the list of music tracks
listened to with associated context data, but some form of
music profile that models her taste.

TABLE I
OVERVIEW OF ROLES AND THEIR DATA ACCESS

Role

Data

music
data

filtered
music
data

context
data

filtered
context

data

group
profile

playlist

Guest
Sender x x x x

Guest
Receiver x

Host x x x x
MMSP x
MPRSP x
MPSP x

MMSP: Music Metadata Service Provider
MPRSP: Music Playlist Recommendation Service Provider
MPSP: Music Player Service Provider

B. Requirement 2: Automation

Looking at the mobile component, the collection of music
and context data is done without any user interaction. The user
just uses her music player application.

The meeting host just has to create a meeting and can use
the automatically created QR code to invite meeting guests.
At the meeting itself, she just needs to start the music player
widget on the automatically generated meeting website.

For attending a meeting, the meeting guest has to trigger
the QR code scan. After receiving the meeting information
from the server, she can decide whether she wants to attend
and create a filtered list of music and context data to send.
Choosing what data to send is a necessary manual step in order
to assure the guest’s privacy. Without considering privacy, this
step could be automated and every user would send their data.

The meeting itself can then run fully automatically. Coming
guests are automatically considered and leaving guest disre-
garded in the group music playlist.

C. Requirement 3: Battery consumption

The mobile application is used in two processes: tracking
music and context and sending data to the meeting host. The
latter process is executed only occasionally. The tracking of
music and context is run permanently when listening to music,
so we focus on this process in this evaluation. We used an LG
Nexus 5, running stock Android 5.1.1 with only the stock



Google applications and an additional file explorer installed.
We collected two sets of data. In both cases, during the whole
run, we turned off the display and let music play continuously.
The first dataset tracked the battery life without using our
application: 19.5 hours. For the second dataset, we let our
mobile application run. The battery lasted 19.3 hours. Our
evaluation shows that the usage of our application made the
battery drain around 1 percent faster. Our interpretation of this
result is that the power consumption by playing back music
is already so high that the tracking of music and context data
does not carry a lot of additional weight. Furthermore, in real
world scenarios, additional applications that cause traffic and
notifications, like email, messaging, or online social network
applications, will most likely make the additional battery drain
by our application unnoticeable.

V. CONCLUSION AND OUTLOOK

In our paper, we combined the ideas of the smartphone
being both a highly individualized device, as well as a device
for social interaction. We designed and implemented a group
music playlist generator that continuously creates group music
playlists based on group music profiles for guests attending
a meeting. We use the smartphone to track individual musi-
cal tastes. We evaluated the privacy, automation and battery
consumption of our system. When designing our system, we
took into consideration current discussions about privacy, data
ownership, and data control. We keep the data collected to a
minimum with respect to the application it is used for. We
also detailed further possible improvements to advance the
level of privacy even more. The level of automation is already
very high and further automation might only be possible by
compromising privacy. For the mobile application, we evalu-
ated that the additional battery consumption is negligible. The
design of our system might give hints on how to develop other
privacy-aware applications or group recommender systems.

Future work includes evaluating the pre-processing and
consolidation step for generating the group music profile to
quantify the quality of the generated playlists. Furthermore, the
collected data could be used for other features like displaying
who is attending the party or for visualizing a map which
displays where which music is popular. Current technologies
also allow for even more automation: Bluetooth Low Energy
beacons could be used for accurate indoor positioning of
meeting guests in order to automatically infer the atmosphere
of the party. The smartphone accelerometer could be uti-
lized for recognizing dancing moves to additionally impact
the social music playlist creation. Further future work is to
enhance the concept of current online social networks by, e.g.,
automatically connecting people with similar tastes in music.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement No 645342, project reTHINK and from project
DYNAMIC6 (grant No 01IS12056), which is funded as part of

6http://www.dynamic-project.de

the Software Campus initiative by the German Federal Min-
istry of Education and Research (BMBF). The authors would
like to thank Jonas Düver, Paul Mälzer, Aleksej Perevosnikov,
and Raed Ben Younes for their substantial work regarding the
implementation of the prototype.

REFERENCES

[1] A. Smith, “U.S. Smartphone Use in 2015,” http://www.pewinternet.org/
2015/04/01/us-smartphone-use-in-2015/, Accessed 2015-10-07.

[2] L. Baltrunas, L. Rokach, M. Kaminskas, B. Shapira, F. Ricci, and
K.-H. Luke, “Best Usage Context Prediction for Music Tracks,” in
in Proceedings of the 2nd Workshop on Context Aware Recommender
Systems, 2010.

[3] Y.-C. Teng, Y.-S. Kuo, and Y.-H. Yang, “A large in-situ dataset for
context-aware music recommendation on smartphones,” in 2013 IEEE
International Conference on Multimedia and Expo Workshops (ICMEW).
IEEE, Jul. 2013, pp. 1–4.

[4] Merriam-Webster, “privacy,” http://www.merriam-webster.com/
dictionary/privacy, Accessed: 2015-10-07.

[5] P. Bosesky, P. H. Deussen, A. Quandt, S. E. Schulz, and L. Strick,
“Datenhoheit in der Cloud,” Fraunhofer Fokus, Berlin, Tech. Rep., 2013.
[Online]. Available: http://publica.fraunhofer.de/dokumente/N-281950.
html

[6] M. Falch, A. Henten, R. Tadayoni, and I. Windekilde, “Business models
in social networking,” in CMI Int. Conf. on Social Networking and
Communities, 2009.

[7] A. Datta, S. Buchegger, L.-H. Vu, T. Strufe, and K. Rzadca, “De-
centralized Online Social Networks,” in Handbook of Social Network
Technologies and Applications. Springer, 2010, pp. 349–378.

[8] A. Bleicher, “The anti-Facebook,” IEEE Spectrum, vol. 48, no. 6, pp.
54–82, 2011.

[9] C. Wilson, T. Steinbauer, G. Wang, A. Sala, H. Zheng, and B. Y.
Zhao, “Privacy, Availability and Economics in the Polaris Mobile Social
Network,” in Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications, ser. HotMobile ’11. New York, NY, USA:
ACM, 2011, pp. 42–47.

[10] A. K. Dey, “Understanding and Using Context,” Personal Ubiquitous
Comput., vol. 5, no. 1, pp. 4–7, Jan. 2001.

[11] O. Yurur, C. Liu, Z. Sheng, V. Leung, W. Moreno, and K. Leung,
“Context-Awareness for Mobile Sensing: A Survey and Future Direc-
tions,” IEEE Communications Surveys Tutorials, vol. PP, no. 99, pp.
1–28, 2014.

[12] A. Crossen, J. Budzik, and K. J. Hammond, “Flytrap: intelligent group
music recommendation,” in Proceedings of the 7th international confer-
ence on Intelligent user interfaces. ACM, 2002, pp. 184–185.

[13] A. Beach, M. Gartrell, X. Xing, R. Han, Q. Lv, S. Mishra, and
K. Seada, “Fusing mobile, sensor, and social data to fully enable context-
aware computing,” in Proceedings of the Eleventh Workshop on Mobile
Computing Systems & Applications. ACM, 2010, pp. 60–65.

[14] M. Schedl, G. Breitschopf, and B. Ionescu, “Mobile Music Genius:
Reggae at the Beach, Metal on a Friday Night?” in Proceedings of
International Conference on Multimedia Retrieval. ACM, 2014, pp.
507–510.

[15] F. Beierle, S. Göndör, and A. Küpper, “Towards a Three-tiered Social
Graph in Decentralized Online Social Networks,” in Proceedings of
the 7th International Workshop on Hot Topics in Planet-scale mObile
computing and online Social neTworking, ser. HotPOST ’15. ACM,
2015, pp. 1–6.

[16] S. Berkovsky and J. Freyne, “Group-based Recipe Recommendations:
Analysis of Data Aggregation Strategies,” in Proceedings of the Fourth
ACM Conference on Recommender Systems, ser. RecSys ’10. ACM,
2010, pp. 111–118.

[17] U. Bareth, A. Küpper, and B. Freese, “Geofencing and Background
Tracking - The Next Features in LBS,” in Proceedings of the 41th Annual
Conference of the Gesellschaft für Informatik e.V. (INFORMATIK 2011),
vol. 192. Berlin, Germany: Köllen Druck + Verlag GmbH, Oct 2011.

[18] S. Rodriguez Garzon and B. Deva, “Geofencing 2.0: Taking Location-
based Notifications to the Next Level,” in Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
ser. UbiComp ’14. ACM, 2014, pp. 921–932.

[19] O. M. Group, “Business process model and notation (bpmn), version
2.0.2,” Available at: http://www.omg.org/spec/BPMN/2.0.2/, 2013.



Additional Information

Bibliographic Data F. Beierle, K. Grunert, S. Göndör, and A. Küpper, “Privacy-aware Social Music Playlist 
Generation,” in Proc. 2016 IEEE International Conference on Communications (ICC). 
IEEE, 2016, p. 5650–5656.

Pre-print from https://beierle.de

Online at http://dx.doi.org/10.1109/ICC.2016.7511602

Authors Felix Beierle

Kai Grunert

Sebastian Göndör

Axel Küpper

BibTeX @inproceedings{Beierle2016ICC,
title = {{Privacy-aware Social Music Playlist Generation}},
author = {Beierle, Felix and Grunert, Kai and G\"ond\"or, Sebastian and K\"upper, Axel},
booktitle = {{Proc. 2016 IEEE International Conference on Communications (ICC)}},
publisher = {{IEEE}},
year = {2016},
pages = {5650—5656},
doi = {10.1109/ICC.2016.7511602}
}

Copyright Note IEEE Copyright Notice
Copyright (c) 2016 IEEE

Personal use of this material is permitted. Permission from IEEE must be obtained for 
all other uses, in any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works.

https://www.researchgate.net/profile/Felix_Beierle
http://dx.doi.org/10.1109/ICC.2016.7511602
https://www.researchgate.net/profile/Sebastian_Goendoer
https://scholar.google.com/citations?user=CO5u8kEAAAAJ
https://scholar.google.com/citations?user=idk6788AAAAJ
https://beierle.de/

