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Abstract—Stress is leading to bad health and contributes to
economic loss due to employee absence. Real-time stress detection
based on wearable sensor data can enable the implementation of
mitigating strategies. While several approaches to stress detection
exist, setting up a new system can be tedious. We demonstrate
how the use of libraries and tools for automation can speed up
many of the necessary steps when developing a stress detection
system. We employ automated feature engineering and automated
machine learning. The resulting stress detection system we
developed this way is based on the WESAD dataset and achieves
a F1 score of 0.87 for unseen users based on 30 seconds of
wearable sensor data.
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I. INTRODUCTION AND RELATED WORK

Stress contributes to bad health and bad work performance.
It is estimated that 2–16% of a team’s salaries are being spent
on staff absence each year [1]. Automatically detecting stress
could enable employers or individuals to implement mitigating
strategies. Wearables are commonly used and contain a variety
of sensors that could be used as data sources for stress detec-
tion, and, in general, users seem quite willing to share their
data [2], [3]. In their extensive survey on stress detection, Can
et al. showed that there are many machine learning models that
researchers have used for detecting stress from sensor data [4].
The variety of available methods might be overwhelming when
implementing a stress detection system for sensor data from
wearables. However, there are also several specialized libraries
and tools for automating processes needed for solving machine
learning problems. In this paper, we demonstrate how a stress
detection system including a deployed demonstrator can be
set up with the help of automated library and tools, while
achieving a good performance.

II. METHODOLOGY

A. Data Sets

We used two publicly available, labeled datasets in our
work. Both of them are from studies that utilized the Empatica
E4 wristband wearable. Specifically, we used data from the
following sensors, recorded in the given frequencies:
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• ACC – accelerometer sensor – 32Hz
• BVP – blood volume pulse – 64 Hz
• EDA – electrodermal activity – 4 Hz
• TEMP – temperature – 4 Hz
The first dataset is the WESAD dataset, for which Schmidt

et al. collected data in a lab setting [5]. The 15 participants
were wearing a Empatica E4 wristband and another sensor
on the chest. The researchers utilized the Trier Social Stress
Test (TSST) [6] for stress recordings, a standard test known
for inducing stress. For our purposes, we disregarded other
recorded states like amusement and only used the baseline
and stress recordings. As we want to pursue the detection of
stress from common wearable sensors, we used only the data
from the wristband, not the chest sensor.

In [7], Hosseini et al. equipped 15 nurses with Empatica E4
wristbands during the COVID-19 outbreak. The nurses could
edit stress labels that were predicted by a model, or fill out a
questionnaire for labeling time windows. Stress was recorded
as no stress, medium, or high. In our work, we only used the
time windows marked as no stress and high stress.

B. Feature Engineering

We employed FLIRT for automated feature engineering
for time series data [8]. FLIRT was specifically developed
for wearable data and specifically supports the Empatica E4.
FLIRT can calculate several features on sliding windows on
time series data. There are two parameters to consider: the
window size and the step size. The window size indicates how
many seconds of data are used for the calculation of features.
The step size indicates how many seconds the window moves
ahead for the next feature calculation.

The smaller the window size, the fewer data points are
needed for making a prediction, and the faster we can possibly
detect stress. On the other hand, the smaller the window size,
the less accurate the model will be. Consider an extreme
case: with an extremely small window of only one value, it is
unlikely that the calculated features will be representative of
a stressful or unstressful situation.

C. Machine Learning

Overall, we have a binary classification problem: stress vs.
no stress. For the Nurses dataset, we have 84% stress data vs.
16% no stress data from 15 users. For the WESAD dataset,
we have 36% stress data vs. 64% no stress data from 15 users.



Because of the imbalance, we chose the F1 score instead of
accuracy as the evaluation metric.

Our goal is to have a generic, user-independent model, i.e., a
model that is trained on some users, that generalizes well, and
is applicable to new, unseen users. For the machine learning
pipeline, the requirement then is to have each user either in
the train or in the test set.

For finding an appropriate machine learning pipeline, we
employed AutoML (automated machine learning) with the
help of TPOT [9], [10]. For the final model, for model
explainability, we employed SHAP [11], [12]. All code is
publicly available on GitHub.1 We deployed a demonstrator
showcasing the resulting model. We used FastAPI, Streamlit,
and Docker.

III. RESULTS

Feature engineering yielded more than 200 features overall.
We removed all features with a correlation higher than 0.8.
We calculated features for a variety of window sizes and step
sizes. We used 12 users for training and 3 users for testing.

Our experiments immediately showed that we cannot build
a model that detects stress from the Nurses dataset. The stress
detection based on the Nurses dataset was not better than
chance (random guessing). We suspect that the labeling was
too imprecise. When the nurses reflected after a task if it was
stressful, maybe larger time windows were labeled as stressful,
while only parts of those were where the actual stress was
experienced. We proceed only with the WESAD dataset.

Running TPOT only on the WESAD data with different
window and step sizes, different tree-based algorithms showed
promising results, especially the ExtraTreesClassifier.2 Trading
off between less data needed for stress detection versus a lower
F1 score, we chose a 30 second window size and 1 second step
size for the final dataset.

Removing the correlated features, we have 71 features in the
final dataset. The final pipeline contains two steps, a MaxAb-
sScaler3 and an ExtraTreesClassifier. After a hyperparameter
search with BayesSearchCV4, we set bootstrap to True, cri-
terion to log_loss, max_features to 0.6, minsamples_leaf to
5, min_samples_split to 14, and n_estimators to 50. The final
scores on the unseen test users are a F1 score of 0.87, with a
precision of 0.94 and a recall of 0.82.

We investigated feature importance with SHAP. We observe
that the permutation entropy (measure of complexity of time
series data [13]) of the BVP (blood volume pulse) signal is
deemed the feature with the most significant impact on the
model output. For lower values for this feature, the model
is likelier to predict 1 (stress). Given the data we have, it is
very difficult for a layperson of the medical field to interpret

1https://github.com/fbeierle/stress-detection
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

ExtraTreesClassifier.html; accessed 2023-05-05
3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MaxAbsScaler.html; accessed 2023-05-05
4https://scikit-optimize.github.io/stable/modules/generated/skopt.

BayesSearchCV.html; accessed 2023-05-05

results like this. What we could imagine is that if there is a
high stress level, the pulse is generally high, driving down the
complexity of the BVP values. Similarly, we could guess the
interpretation of the other features – a medical expert should
be involved for more knowledgeable interpretations of these
results. While it might be helpful or interesting to the user
of a stress detection system to learn about the reasons for
a particular prediction/detection, such results from SHAP are
most likely difficult to interpret.

For demonstration purposes, we developed a web interface,
allowing the user to interactively query the deployed model.
We deployed the demonstrator via Docker Compose with three
separate Docker containers. One handles processing of the
sensor data, one contains the model for inference, and one
contains the Streamlit web-interface.

IV. DISCUSSION

Overall, utilizing specialized libraries can save a lot of
time when developing stress detection systems. With FLIRT,
we could successfully automate feature engineering for time
series data from wearable sensors. TPOT proved to be a
valuable tool for finding an appropriate machine learning
pipeline. The trade-off between faster prediction and lower
F1 score when choosing a window size depends on the type
of data and specific type of application to be deployed. SHAP
for complex time series features might not yield meaningful
results for laypersons. Frameworks like FastAPI and Streamlit
enable the quick development of demonstrators. Deploying the
components separately allows the individual scaling of each
service.

Based on our observations on the different performance
of the two datasets, we suspect that precise labeling of the
stressful situation is necessary. There are only 15 participants
in the WESAD dataset. Future work includes collecting more
data to get more robust results. Conducting lab sessions for
doing this will likely be costly in terms of time and money.
The WESAD study was conducted with the Empatica E4.
We am not sure to what extent the results are applicable to
other wristbands like the Apple Watch. Future work includes
collecting data from multiple wristbands and trying to replicate
the results. When collecting more data, we could collect
data with labels indicating a level of stress instead of binary
stress/no stress values. Then we could predict a stress level
instead of just a binary label.

Overall, many steps of the data processing and machine
learning pipeline can be automated, enabling researchers and
developers to quickly develop first solutions for stress detec-
tion systems or for similar scenarios.
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