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Abstract: Notifications are an essential part of the user experience on smart mobile devices. While
some apps have to notify users immediately after an event occurs, others can schedule notifications
strategically to notify them only on opportune moments. This tailoring allows apps to shorten the
users’ interaction delay. In this paper, we present the results of a comprehensive study that identified
the factors that influence users’ interaction delay to their smartphone notifications. We analyzed
almost 10 million notifications collected in-the-wild from 922 users and computed their response
times with regard to their demographics, their Big Five personality trait scores and the device’s
charging state. Depending on the app category, the following tendencies can be identified over the
course of the day: Most notifications were logged in late morning and late afternoon. This number
decreases in the evening, between 8 p.m. and 11 p.m., and at the same time exhibits the lowest
average interaction delays at daytime. We also found that the user’s sex and age is significantly
associated with the response time. Based on the results of our study, we encourage developers to
incorporate more information on the user and the executing device in their notification strategy to
notify users more effectively.

Keywords: notification; call to action; response time; HCI; mobile computing

1. Introduction

Notifications are designed to signal the user and to attract the attention the latter. They
either remind users, provide them with information, or prompt them to take action. This
feature was incorporated into operating systems (OS) before the advent of the smartphone
and has been part of human–computer interaction design for decades. In contrast to the
desktop PC realm, notifications in mobile computing are a much more integral part of the
user experience, as the smartphone is usually within the user’s reach much more often
than a traditional desktop PC [1]. Thus, the installed mobile applications can persuade
users to interact with the smartphone virtually every minute of the day and therefore
increase engagement. In [2], for example, the introduction of a notification mechanism,
which served as a call to action, quintupled the frequency of data collection in their health
service. A notification as a call to action is particularly effective if the notification offers
action buttons to facilitate the user’s interaction [3].

However, for some applications, this pervasive capability to attract the users’ attention
has become a prerequisite for reliable operation. Apps, for example, where a call to action
is an integral part of the functionality (e.g., the app category of instant messaging) require
the operating system to provide a reliable way to notify users in a timely manner [4]. In
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addition, less prominent app categories, such as health, also rely on a robust notification
mechanism [5]. Daily life research methods such as Ecological Momentary Assessment or
Experience Sampling, for example, are often used in studies in the healthcare domain and
heavily utilize notifications to signal study participants [6–8]. Sometimes their sampling
design is limited to only a small period of time for user interaction [9].

In recent years, the reliability of the notification management implementations of apps
not using proprietary services offered by OS vendors is challenged by newly introduced
battery optimization features in the Android OS versions 6, 7, 8, and 9. More specifically,
the OS uses the interaction history of mobile applications to intelligently manage resources
(i.e., optimizing energy consumption). These features especially compromise the execu-
tion of infrequently used apps, causing them to no longer operate as intended by the
developer [10].

In addition to the technical requirements for a reliable notification mechanism, often
implemented using proprietary solutions from the OS provider (i.e., Firebase Cloud Mes-
saging and Apple Push Notification Service), a more in-depth analysis of user behavior
is also beneficial to improve the effectiveness of notification mechanisms. For example,
studies on notifications have shown that users prioritize app notifications differently, which
influences how they interact with the notification [4,11–13]. At the same time, the number
of notifications can vary greatly per mobile application [14,15] and depend on the hour
of the day. Investigating these differences in a large scale can help to improve future
notification management by designing smarter scheduling mechanisms. The latter, in
turn, has the potential to improve the user experience of an app by incorporating these
usage patterns and helps to minimize notification intrusiveness by optimizing notification
delivery windows [16]. In the case of health apps, user data can help tailor notifications
to the user’s individual health routines, increasing the perceived value of the app and the
likelihood of future user engagement [17]. Optimizing user engagement and preventing
notification fatigue can improve overall app effectiveness by increasing user adherence [18].

This study pursued the following several objectives: Firstly, it aims to quantify user
behavior in terms of notification prioritization, response times, and the impact of notifi-
cation volume. This analysis will include variations between app categories and time of
day. Secondly, it aims to investigate how user demographics (such as age and gender),
personality traits, app category, and device charge level influence user response time to a
notification. By understanding user behavior patterns and preferred interaction times, the
study aims to contribute to the development of intelligent notification scheduling systems.
These systems could optimize notification delivery windows to minimize intrusiveness and
improve the user experience, leading to improved app effectiveness and user engagement.
This is particularly important in the area of health apps where user adherence is crucial.

In this work, we provide such insights into the interaction of smartphone users and
their apps. Based on the TYDR dataset [19–21], we analyzed the interaction with smart-
phone notifications together with other user- and device-related data to identify factors
that influence the users’ smartphone interaction. More specifically, the core contributions
of this work are as follows:

• A detailed exploration of in-the-wild smartphone notifications of a large dataset;
• A comprehensive analysis of temporal differences in user interactions to determine

preferred times for notification scheduling;
• The role of the users’ demographics and personalty traits for notification scheduling;
• The impact of the app’s category and the devices charging state on response times to

smartphone notifications.

The results shall support developers to design more reliable notification services and to
improve the alignment of notification schedules to the common users’ interaction patterns
by incorporating additional information.

The article is structured as follows: Section 2 provides background information on
smartphone notifications, with a focus on the notification mechanisms offered by the An-
droid operating system. Section 3 describes the methods used to collect, process, partition,
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and analyze the data. In Section 4, we present the results of our study, and in Section 5,
we discuss their implications. Finally, in Section 6, we conclude our work and provide an
outlook for future research.

2. Related Work

There are several works that investigated the user’s perception of and interaction
with smartphone notifications. Since various mechanisms in current smartphone OSs can
interfere with the notification creation process, we also provide a brief description of the
issues as well as technical background knowledge in this section.

2.1. Notification Interaction

In several works, smartphone users showed that their behavior regarding the interac-
tion with smartphone notifications is complex and also differs in many regards. Ref. [1],
for example, found an association between call durations and the number of notifications
per day as well as the level of extraversion. Other personality traits, like neuroticism, are
also positively related to smartphone usage [22]. In addition to personality traits, ref. [23]
examined how people use smartphones depending on their age and gender. According
to the study, women tend to use their phones longer than men, with an average daily
usage time of 167 min compared to 154 min for men. Additionally, women tend to spend
more time using communication and social apps, while men spend more time playing
games. These findings suggest that age and gender are significant factors in determining
how individuals use their smartphones. A classification of users in terms of notification
management was also shown in [14]. Interestingly, this is also observed in the opposite
direction: user behavior can be influenced by a call to action in the form of a smartphone
notification [24]. This shows the significance of a comprehensive understanding of how
users interact with notifications and what influences these interactions.

In their study on notifications, Pielot et al. [15] found that participants typically viewed
notifications within a few minutes, but also perceived them as disruptive. Additionally,
participants reported feeling stressed and overwhelmed by the number of notifications re-
ceived, particularly from messaging apps. Weber et al. [25], in turn, investigated how users
deal with interruptions from mobile notifications by manually deferring them. Previous
research has focused on delivering notifications at convenient times to avoid interrupting
users. This study examined a different approach: an app called “NHistory” that allows
users to ’snooze’ notifications for a specific time or until a specific time. Users typically
snooze notifications for short periods of time, usually no longer than two days. The most
frequently snoozed notifications include messages, calendar notifications, social media, and
email notifications. To identify opportune moments for user interaction, ref. [26] developed
a machine learning model. The model significantly outperformed the baseline model and
predicted user engagement with recommended content 66.6% more accurately. It uses
phone usage patterns, communication activity, and context such as location to make these
predictions. Although this approach theoretically enhances user engagement with mobile
notifications by sending them at optimal times, the study only examined engagement with
a specific content format. It is unclear whether the model can be generalized to other
notification types or content.

To shed light on the notification ecosystem, ref. [4] conducted, to the best of our
knowledge, the largest study (regarding the amount of participants and notifications) in
the literature. Even though the study is from 2014, the paper provides a broad look at how
people interact with notifications, as they collected almost 200 million notifications of more
than 40,000 users. In their study, they found that the amount of notification a user receives
differs for each app category. WhatsApp, for example, was particularly prevalent in their
data, leading the authors to suspect that it was the most widely used and most common app
of their study participants. The second most common app category was e-mail, followed
by SMS. Participants of this study, furthermore, stated that notifications were important
for them, especially when the notification is related to communication. For these reasons,
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the authors assume that communication remains one of the most important functions of
smartphones, despite the large variety of apps and usage possibilities. However, the study
differs from the TYDR project in its technical structure: Ref. [4] created both a mobile
and a desktop application in the form of a web browser plugin for Google Chrome and
Mozilla Firefox. The desktop application served as an incentive for study participants
to view notifications from their smartphone on their PC. This could have an impact on
the study’s participant selection, as the use case mainly targets users of both mobile
and desktop devices. Another difference between [4] and our work is the availability
of user demographic data in TYDR. In this work, we show that additional information
on the app user can make an important contribution to understanding user interactions
with notifications.

In [27], the authors studied interruptions of smartphone users caused by notifications.
Following a comparable in-the-wild data collection approach to the TYDR app, the authors
used Mobile Crowdsensing to log data in the background and Experience Sampling Meth-
ods to collect additional data (e.g., Big Five personality traits) using questionnaires. They
found that the presentation, alert type, sender–recipient relationship and characteristics of
the task influence the user interaction. Furthermore, they found a significant correlation
between a notification’s seen time and the user’s extroversion and neuroticism [27]. In
contrast to our work, they focused not on the temporal delay of an interaction, but on the
users’ receptivity to notifications. Furthermore, their work does not differentiate results by
app category. The elaborate assessment of notifications is perhaps the reason that only a
fraction of people participated in the study (n = 20) compared to the TYDR study (n = 922).

In another work, ref. [11] analyzed in their study a larger dataset containing roughly
800,000 notifications from 278 users. They also found that instant messaging notifications
are interacted with the fastest. Furthermore, they showed that a surprisingly large number
of notifications were received while the user is actively using the phone. When looking
at the restrictions described in Section 2.2, this directly influences the timely creation of
the notification. However, in contrast to our work, they focused on the daily number of
notifications instead of a per-hour evaluation and, furthermore, calculated conversion rates
for the notifications (i.e., percentage of interaction-triggering notifications). Again, the
app category “messages” was the most interesting from the users’ perspective, since this
category showed the highest conversion rate.

Table 1 compares the research in this section with the study presented in this paper,
highlighting the different parameters analyzed in each study. Our study included more
parameters in the overall analysis, as we included demographic information, personality
traits, app-related data, and battery status, while the other studies used fewer parameters
for their analysis.
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Table 1. Comparison of the parameters of the analysis between the related work and the study presented in this paper.

Study # Users # Records Demographic Information Personality Traits Notification Interaction App Metadata Battery Level

Exler et al. [1] 23 N/A No Extraversion No No No

Sahami et al. [4] 40,000 200,000,000 No No Response Time, App Category, No
Notification Volume, Package Name
Notification Importance

Pielot et al. [11] 278 794,525 No No Response Time, Package Name No
Notification Volume
Notification Category

Weber et al. [14] 3953 >8,000,000 No No Notification Volume, App Category, No
Notification Drawer Position, Package Name
Notification Priority,
User Types

Pielot et al. [15] 15 6854 No No Response Time, Package Name No
Notification Volume,
Notification Category

Chen et al. [22] 869 794,525 Sex Extraversion, No No No
Neuroticism,
Psychoticism

Mehrotra et al. [27] 20 10,372 No Openness, Interaction Rate, No No
Conscientiousness, Response Time,
Extraversion, Notification Priority,
Agreeableness, Alert Modality
Neuroticism,

Weber et al. [25] 295 20,345,277 No No Notification Volume App Category, No
Package Name

Pielot et al. [26] 337 794,525 Age No Engagement Yes

Andone et al. [23] 30,677 794,525 Sex, No No App Category Yes
Age

Our Study 922 9,894,656 Sex Openness, Response Time, App Category, Yes
Age Conscientiousness, Notification Volume Package Name

Extraversion,
Agreeableness,
Neuroticism,
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2.2. Technical Background

Since notifications constitute an important pillar of modern applications and their
pursuit for attention, current mobile OSs like Android have introduced complex features
for notification management. From a technical perspective, applications use OS interfaces
to instruct the OS to either set up background services that create notifications depending
on incoming messages from a remote entity (remote push notifications), or to schedule the
creation of notifications at a specific time (local push notifications).

However, changes to the behavior of OS interfaces and newly introduced restrictions
on the execution of background services can be error-prone for all those apps that have
not yet been updated or tested for a new OS version. For example, ref. [28] describe in
their work the behavioral change in their mobile crowdsensing app with different Android
versions. They further describe that the background data collection was affected by the
introduction of various battery optimization features. Problems with these OS-related
restrictions regarding background services were also reported in [14]. Vendor-specific OS
adjustments like a battery optimization feature had such an impact on the data collection
that those datasets had to be excluded from the data analysis. To avoid such issue in
the TYDR app, the data collection tasks have been implemented as a foreground service
(see Section 3.1).

Since there is, according to [29], a certain amount of unawareness in the developer
community about OS’ internal mechanisms that affect the execution of apps and their
background services, we briefly describe the following two prominent methods to execute
background tasks on Android as well as limitations posed by the OS:

The background service offers the possibility to continuously run application code in
the background for a longer period of time and without the user’s awareness. This is, for
example, especially useful when notifications or messages need to be received from and
processed by the server at all times and without the app’s prior knowledge. Since back-
ground services are controlled by the app and thus represent potential battery consumers
from the OS’ perspective as well as possibly accessing sensitive information without the
user’s knowledge, they are subject to some restrictions in the latest Android versions. In
addition, background services can be stopped by the OS at any time, which is why a reliable
execution cannot be guaranteed for the entire operating time of the smartphone.

The second way to run application code in the background is through the alarm-based
approach. Via the alarm interface, the Android framework provides a way to schedule
tasks in advance and execute them at a later point in time. The OS then takes over the
management of the tasks, which is why this variant is considered particularly energy-
saving. Depending on the intended use, however, this can affect the timing of the tasks
since alarms are extremely dependent on the battery optimizations integrated in the OS
like Doze or App Standby [30–33].

The most significant restriction of the aforementioned Doze mode is that apps can
perform background tasks only in a periodically offered maintenance window. This restricts
apps from precisely create notifications without including mechanisms that also work on
Doze mode (e.g., proprietary services that are excluded from OS restrictions, such as
Firebase Cloud Messaging). As soon as the user activates the device or charges the device,
Doze mode is terminated and therefore all restrictions are suspended. Both, Doze and
App Standby have large impact on applications [10] that are not designed for optimal
operation under this execution environment. This may also be evident in the creation
of notifications, as, for example, notifications are not created until the next maintenance
window and thus will be displayed delayed.

3. Methodology

We analyzed the data collected with the app TYDR (Track Your Daily Routine) [19–21]
to better understand differences in the usage behavior of app users and support future
apps in their effort for strategic notification scheduling. TYDR (Google Play Store entry:
https://play.google.com/store/apps/details?id=de.dynamic_project.tydr (accessed on

https://play.google.com/store/apps/details?id=de.dynamic_project.tydr
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23 February 2024)) is an app developed for research purposes for Android smartphones
that used the mobile crowdsensing methodology to collect sensor data and smartphone
usage statistics as well as pose questionnaires on the personality of the users. From a
user’s perspective, TYDR shows aggregate statistics about the user’s smartphone use. From
our research’s perspective, we collected these data in order to analyze smartphone usage
behavior. When opening the TYDR app, the user can choose which data he or she is willing
to let the app track and display statistics about.

For this work, we used a subset of the TYDR dataset, containing notification metadata
and battery data. In addition, we used the gathered information about the users’ devices as
well as the responses to a demographic and a personality traits questionnaire. The data
were collected between October 2018 and October 2020.

3.1. Data Collection

From the user’s perspective, in order to let TYDR collect notification metadata, he/she
has to allow TYDR to access notification data, and, in turn, see aggregate statistics about
how many notifications were triggered by which app. Once the permission is given, we
store metadata for each notification in a local database, and periodically upload it to
our backend. For more details on the implementation and privacy aspects, please refer
to [19–21].

To track the interactions of users with their smartphones, TYDR implemented a so-
called notification listener that logs all notification metadata, e.g., app name, timestamp
of the appearance and disappearance of the notification. The notification listener was
implemented as a foreground service instead of a background service with a permanent
notification to indicate the ongoing data collection. This was necessary in order to prevent
the OS from stopping the TYDR app listeners (cf. Section 2.2) and thus not missing any
app interaction. In order to preserve the users’ privacy, all fields containing private data
(e.g., title or content of the notification) were only recorded in hashed form.

The battery-related data were gathered using the BatteryManager interface of the
Android OS. The BatteryManager uses broadcasts to signal any changes in the batteries’
charging state. In addition to the charging state, the current battery level was also logged.
Additional data regarding the executing environment (i.e., smartphone model name),
demographic information of the user (e.g., sex, age), or other user-related information were
collected either using programmable interfaces that were provided by the OS or by asking
the user to fill out questionnaires.

3.2. Data Preprocessing

We deduplicated the battery and notification data, since the TYDR app logs data on
every status change (e.g., due to an app-triggered update). To minimize anomalies in the
Android-related data, we searched the smartphone dataset for smartphone updates. To
be more precise, we excluded data from users who updated their operating system while
using the TYDR app to ensure user-level data integrity. With the now cleaned data, we
were able to calculate the following metric:

Interaction Delay (IDL) describes the temporal difference between the notification
being displayed and the notification being removed from the notification bar (by clicking
or dismissing).

The IDL was calculated as an integer to the second. We removed all records whose
IDL was not greater than zero, as such short interaction times likely indicate automatic
removal rather than human–computer interaction.

We then merged the battery data with the notification data based on timestamps and
user identifier. Notification data and battery data might not be recorded at the same time.
In the merging process, to enrich the notification data, we allowed for a time difference of
10 min between notification timestamp and battery recording. We expect the battery level
not to change significantly in such a short period of time and allow for significantly more
battery level annotation.
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Since our analysis is dedicated to the temporal dynamics of notification creation and
interaction, we have to distinguish between fixed notifications and notifications as a call
to action. In order to disregard fixed notifications (and faulty records), we set an upper
bound for the calculated IDL of one day. This limit excludes only a minimal number of
6496 records (0.06%) from the analysis and has no significant impact on the calculations of
the analysis.

Each record can be associated with a device. Through this relationship, the records
were enriched with additional information about the device (e.g., Android version and
device model ID). To group the apps, we defined a list of 15 categories and manually sorted
each app into one of the following categories: Health, Finance, Outdoor, Shopping, Educational,
Self-Organization, File Processing, Gaming, News & Entertainment, Social Media, Messaging,
System-/OS-related, Misc, Warning, and less than 10 unique users.

Finally, we removed all records that were either not complete (i.e., have attributes
without information) or in the app categories Misc, File Processing, and less than 10 unique
users. Doing so, we ensured on the one hand to only compare datasets containing a mini-
mum amount of users, and on the other to exclude apps that are neither using notification
as reminders nor as a call to action. For example, most notifications in the app category
File Processing originate from cloud and office apps that use notifications to communicate
the status of an ongoing task (e.g., file upload). We excluded these records because our
purpose in this paper is to analyze human–computer interactions.

In addition to the records described above, we included the time of the day in hours
(12 a.m.–11 p.m.) when the notification appeared, the battery level at the moment of
the notification appearance, as well as whether the smartphone was charging at the
moment (yes/no).

3.3. Datasets

After the data processing, the dataset contained 9,894,656 notifications from 922 unique
users. In the following, this dataset is called DS1. In addition, we formed a second dataset
(DS2) containing only data from users who have also filled out a demographic questionnaire
(58%) and a third dataset (DS3) with users that filled out a demographic as well as a Big Five
personality traits questionnaire (45%). In Table 2, we give an overview about the datasets.
DS2 contains the users that filled out a demographic questionnaire. Overall, 84% of users
are male (n = 451) and 16% are female (n = 86). The mean age of users is 35.2 years with
a standard deviation of 10.6 years. DS3 contains the users that additionally filled out a
Big Five personality trait questionnaire (BFI-2, [34,35]). The measured Big Five personality
traits of TYDR user are comparable to those of the population average with only minor
differences [21].

Table 2. Overview of the used datasets. DS1 contains only device- and app-related data. DS2
contains filled out demographic questionnaires. In DS3, users also filled out an additional personality
questionnaire. Therefore, DS3 is a subset of DS2 and DS2 is a subset of DS1. Percentages have
been rounded.

DS1 DS2 1 DS3 2

Sample Size 9,894,656 (100%) 5,794,43 (58%) 4,396,241 (44%)

Unique Users 922 (100%) 537 (58%) 417 (45%)
Females - 86 (16%) 82 (20%)
Males - 451 (84%) 335 (80%)

1 DS includes a demographic questionnaire. 2 DS includes both the demographic questionnaire and a Big Five
personality traits questionnaire.

3.4. Data Analysis

We first used descriptive statistics to present the distribution of the different datasets
and to describe the socio-demographic characteristics of the respondents. We calculated
the median, mean, and standard deviation of the IDL depending on the following factors:
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app category, time of day in hours, charging, battery level, sex (only DS2 and DS3; sex refers to
the binary sex assigned at birth), age (only DS2 and DS3), and Big Five personality traits (only
DS3). Regarding time of day in hours, for all analyses, we truncated all local time values after
the specification of the hour. In other words, we only considered the number of hours and
did not round.

We then conducted a bivariate analysis of the data using a compared mean test to
compare the mean of the IDL of different groups. More specifically, we determined whether
the associated means of the various specifications of one variable were significantly different
from each other. Thereby, we applied different kinds of tests depending on the characteristic
of the variable. For categorical variables, such as the Sex or App category, we used a t-test,
if the variable has only two categories (e.g., charging), or ANOVA (analysis of variance), if
the variables has more than two categories (e.g., app category). For continuous variables,
such as battery level, the Spearman correlation was applied. To measure the significance,
we chose a significance level of 5%. In the subsequent multiple linear regression model, all
variables for which the p-value was less than 0.05 in the bivariate analysis, were included
to model the linear relationship between those explanatory variables and the IDL. The
model predicts the IDL based on the values of the explanatory variables. Before the
regression was conducted, the important requirements for this analysis, such as the absence
of multicollinearity, have also been reviewed and confirmed. In order to include the
categorical variables in the linear regression model as well, they had to be transformed into
dummy variables. A dummy variable is a binary variable that can take only the values 0
or 1, representing the observation of a characteristic (e.g., being male was equal to 1 or not
being male was equal to 0). For each categorical variable, which can take on k different
values, k − 1 dummy variables were included in the regression model to avoid perfect
collinearity. Thus, the specifications not charging, Messaging, as well as female are used as
reference categories within the individual features. All analyses were two-sided with a
significance level of p < 0.05.

4. Results

The characteristics of the users and the distribution of interaction delays in minutes are
summarized in Table 3. DS1 included 9,894,656 notifications from 922 users, DS2 included
5,794,439 notifications from 537 users and included factors such as sex and age, and DS3
included 4,396,241 notifications from 417 users and included the variables from DS2 as well
as the Big Five personality traits.

Regarding the optimizations and limitations introduced in Android 6 and 7 (see
Section 2.2), we analyzed the Android version of the devices. Over 70% of the dataset was
collected from devices running Android 8, followed by Android 9 and Android 7 as the
second and third most common versions, respectively. The remaining data accounted for
less than 0.2% of DS1.

When examining the apps that trigger notifications, it is evident that the quantity of
records gathered differs significantly among the app categories (see Table 3). More than
half of the data can be attributed to the Messaging group, which comprises both messenger
and email apps (e.g., Telegram Messenger and Google Mail), accounting for a substantial
portion of the records in DS1. According to Table 4, the messenger app WhatsApp on its
own accounts for 35% of DS1.

Table 3 displays both the mean and median IDL for the apps in our dataset. The mean
is the arithmetic average and represents the central tendency of the data. However, since
outliers (i.e., notifications not responded to for a long time) are not uncommon in mobile
crowdsensing studies, we also calculate the median to provide an additional measure for
data understandability. The median represents the middle value of an ordered dataset (i.e.,
the IDL of 50% of all notifications is lower). Therefore, when comparing the median IDL of
two app categories, we obtain a less biased view of the data.
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Table 3. Descriptive statistical analysis of DS1, DS2, and DS3. Demographic information is only available in DS2 and DS3. Data on Big Five personality traits are
only available in DS3.

DS1 (n = 922) DS2 (n = 537) DS3 (n = 417)
n (%) Median Mean SD p-Value n (%) Median Mean SD p-Value n (%) Median Mean SD p-Value

9,894,656 (100%) 0.35 16.52 67.61 5,794,439 (100%) 0.35 15.37 63.17 4,396,241 (100%) 0.33 15.03 60.48
Sex

Female NI 680,196 (11.7%) 0.43 12.78 52.15 <0.001 ˆ 661,565 (15.0%) 0.43 12.72 51.92 <0.001 ˆMale 5,114,243 (88.3%) 0.33 15.71 64.49 3,734,676 (85.0%) 0.32 15.44 61.87
Age groups

18–29 2,153,202 (37.2%) 0.30 11.09 47.19

<0.001 *

1,717,147 (39.1%) 0.28 10.56 44.79

<0.001 *30–44 NI 2,263,726 (39.1%) 0.32 16.18 67.32 1,686,218 (38.4%) 0.30 16.98 67.95
45–62 1,335,274 (23.0%) 0.55 20.38 75.75 950,735 (21.6%) 0.52 18.92 68.51

>62 42,237 (0.7%) 0.83 31.43 87.43 42,141 (1.0%) 0.85 31.50 87.52
App category

Educational 161,001 (02%) 8.98 28.63 75.13

<0.001 ˆ

91,312 (1.6%) 8.62 26.16 68.29

<0.001 ˆ

75,768 (1.7%) 8.83 25.51 64.51

<0.001 ˆ

Finance 84,229 (01%) 1.35 31.43 96.13 45,889 (0.8%) 0.10 20.17 77.40 42,453 (1.0%) 0.08 18.64 75.11
Gaming 71,444 (01%) 12.75 64.1 129.03 35,545 (0.6%) 13.77 65.49 129.64 26,979 (0.6%) 13.82 64.77 117.65

Health 132,284 (01%) 3.90 39.38 108.72 77,868 (1.3%) 4.37 38.59 100.40 67,054 (1.5%) 4.28 36.83 92.65
Messaging 5,332,539 (54%) 0.33 10.49 45.32 3,103,692 (53.6%) 0.32 9.62 41.79 2,341,035 (53.3%) 0.33 10.11 42.70

News-Entertainment 496,731 (05%) 9.30 55.44 136.8 301,532 (5.2%) 9.92 51.18 130.74 155,005 (3.5%) 9.38 60.07 137.74
Outdoor 299,359 (03%) 0.17 16.97 61.69 201,299 (3.5%) 0.12 14.86 55.18 178,017 (4.0%) 0.10 12.68 47.95

Self-Organization 66,866 (01%) 7.30 46.07 109.5 44,405 (0.8%) 6.85 46.21 108.61 32,707 (0.7%) 5.00 44.45 109.60
Shopping 382,611 (04%) 0.33 22.99 88.85 231,964 (4.0%) 0.32 22.51 85.21 174,207 (4.0%) 0.35 21.74 80.86

SocialMedia 405,317 (04%) 6.88 51.09 125.36 232,144 (4.0%) 5.12 42.65 104.39 176,853 (4.0%) 5.02 40.30 98.25
System OS 2,324,001 (23%) 0.13 10.72 55.92 1,348,839 (23.3%) 0.15 10.98 55.77 1,046,461 (23.8%) 0.13 10.91 53.91

Warning 138,274 (01%) 0.07 2.71 20.18 79,950 (1.4%) 0.07 1.75 16.22 79,702 (1.8%) 0.07 1.64 15.69
Time of day in hours

12–5 a.m. 806,622 (08%) 0.18 31.29 102.2

<0.001 *

482,604 (8.3%) 0.18 28.86 94.66

<0.001 *

385,514 (8.8%) 0.17 28.19 91.94

<0.001 *6–11 a.m. 2,688,363 (27%) 0.43 16.71 63.3 1,573,411 (27.2%) 0.43 15.92 60.04 1,163,349 (26.5%) 0.40 15.58 55.87
12–5 p.m. 3,372,461 (34%) 0.38 13.56 56.08 1,972,049 (34.0%) 0.38 12.43 52.08 1,508,429 (34.3%) 0.37 11.90 48.97
6–11 p.m. 3,027,210 (31%) 0.30 15.71 70.89 1,766,375 (30.5%) 0.32 14.47 65.91 1,338,949 (30.5%) 0.30 14.29 64.05
Charging

no 7,452,097 (75%) 0.42 17.04 68.37 <0.001 ˆ 4,343,592 (75.0%) 0.42 16.00 64.34 <0.001 ˆ 3,288,858 (74.8%) 0.42 15.69 61.48 <0.001 ˆyes 2,442,559 (25%) 0.20 14.93 65.19 1,450,847 (25.0%) 0.20 13.48 59.51 1,107,383 (25.2%) 0.18 13.10 57.39
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Table 3. Cont.

DS1 (n = 922) DS2 (n = 537) DS3 (n = 417)
n (%) Median Mean SD p-Value n (%) Median Mean SD p-Value n (%) Median Mean SD p-Value

Battery level
Low (0–30%) 1,340,702 (14%) 0.27 13.41 58.81

<0.001 *
829,101 (14.3%) 0.27 12.32 55.78

<0.001 *
633,107 (14.4%) 0.25 12.06 53.55

<0.001 *Middle (31–70%) 3,924,718 (40%) 0.33 14.03 59.19 2,387,027 (41.2%) 0.35 13.49 57.71 1,820,266 (41.4%) 0.33 12.79 53.74
High (71–100%) 4,629,236 (47%) 0.40 19.53 76.03 2,578,311 (44.5%) 0.38 18.09 69.80 1,942,868 (44.2%) 0.38 18.10 67.97

BFI
Openness

NI NI<3.0 640,252 (14.6%) 0.43 14.82 59.95 <0.001 *>3.0 3,755,989 (85.4%) 0.32 15.07 60.57
Conscientiousness

NI NI<3.0 1,017,425 (23.1%) 0.3 13.72 56.93 <0.001 *>3.0 3,378,816 (76.9%) 0.35 15.43 61.51
Extraversion

NI NI<3.0 1,466,851 (33.4%) 0.33 16.5 66.76 <0.001 *>3.0 2,929,390 (66.6%) 0.33 14.3 57.07
Agreeableness

NI NI<3.0 471,728 (10.7%) 0.17 12.46 53.63 <0.001 *>3.0 3,924,513 (89.3%) 0.37 15.34 61.25
Neuroticism

NI NI<3.0 3,188,353 (72.5%) 0.35 13.84 55.19 <0.001 *>3.0 1,207,888 (27.5%) 0.32 18.18 72.53
BFI

Openness
NI NI<3.82 2,053,224 (46.7%) 0.40 15.07 58.49 <0.001 *>3.82 2,343,017 (53.3%) 0.28 15.00 62.17

Conscientiousness
NI NI<3.5 2,221,949 (50.5%) 0.40 15.28 61.55 <0.001 *>3.5 2,174,292 (49.5%) 0.27 14.78 59.37

Extraversion
NI NI<3.35 2,136,688 (48.6%) 0.33 15.94 63.63 <0.001 *>3.35 2,259,553 (51.4%) 0.33 14.17 57.34

Agreeableness
NI NI<3.67 2,164,723 (49.2%) 0.25 15.67 61.16 <0.001 *>3.67 2,231,518 (50.8%) 0.45 14.41 59.81

Neuroticism
NI NI<2.74 1,809,642 (41.2%) 0.40 14.63 57.54 <0.001 *>2.74 2,586,599 (58.8%) 0.30 15.31 62.45

* Denotes p-value of Spearman’s correlation between continuous variable and interaction delay. ˆ Denotes p-value of ANOVA or t-test for categorical variables. NI: Not included in
data set.
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Table 4. The top 10 apps with the most notifications in DS1 (IDL in minutes).

App Package Name Frequency, n (%) Mean Median SD

com.whatsapp 1 3,524,857 (35.62%) 4.68 0.23 23.99
com.google.android.gm 1,2 457,984 (4.63%) 21.40 0.85 67.42
com.android.providers.downloads 434,182 (4.37%) 0.87 0.02 17.04
com.android.vending 282,949 (2.86%) 11.89 0.23 67.54
org.telegram.messenger 1 280,649 (2.84%) 13.53 0.75 46.05
com.android.systemui 263,915 (2.67%) 11.13 0.22 61.59
com.facebook.orca 1 249,743 (2.52%) 10.21 0.22 50.05
com.samsung.android.incallui 175,156 (1.77%) 1.13 0.28 6.24
com.google.android.youtube 163,965 (1.66%) 38.12 5.88 109.27
com.microsoft.office.outlook 1 161,561 (1.63%) 41.90 9.55 99.85

1 Assigned to the group Messaging. 2 Google Mail.

The average IDL of WhatsApp (mean = 4.71; median = 0.23) is relatively low compared
to other frequently used apps. It is important to note that the Messaging app category
includes apps associated with social networks, such as Facebook Messenger. The distinction
between social media apps and messenger apps is based on their main function, such as
instant messaging, rather than their affiliation, such as Facebook.

Although the median for similar apps in the Messaging app category, such as Telegram
(package name: com.telegram.messenger) or Facebook Messenger (package name:
com.facebook.orca), is comparatively low, their means differ significantly. Email appli-
cations such as Google Mail (package name: com.google.android.gm) and Microsoft’s email
app Outlook (package name: com.microsoft.office.outlook) exhibit significantly higher
mean values.

The category with the second-largest number of apps is System_OS, with over 2 million
records (23.5%). For instance, Android’s download manager is part of this group, ranking
third among the top 10 apps in DS1. Following the two largest app categories, there is a
significant decrease in notification frequency: the third-largest group, News_Entertainment,
accounts for only 5%, and all other groups each have a share of less than 5% (see Table 3).

Figure 1 also illustrates the large differences in the number of records per group.
It shows the number of notifications for each hour of the day and app category. Blue
cells indicate a large number of records, yellow cells indicate only a few data, and green
cells indicate everything in between. When comparing the app categories Messaging and
Gaming, Messaging showed 66 times more data usage per hour between 10 a.m. and 8 p.m.
Large differences are also noticeable in less populated categories such as Entertainment and
Self_Organization. The dataset also indicates that fewer notifications are generated at night
due to reduced interaction with the smartphone during these times. For instance, in the
Messaging app category, the number of records increases thirteen-fold between 3 a.m. and
6 p.m, while categories like Warning only show a minor increase during the same period.

The median IDL also varies greatly depending on the app category. Figure 2 displays
the distribution of the IDL throughout the day and per app category. While some categories
exhibit less variation across the day (e.g., Educational and Messaging), there is significant
variation in categories such as Gaming and Social_Media. An increase in IDL often occurs at
night, particularly between 1 and 6 a.m., with a peak at 3 or 4 a.m. Figure 2 also shows an
opposing trend for some app categories, such as Finance or Health.



Sensors 2024, 24, 2612 13 of 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Educational

Finance

Gaming

Health

Messaging

News_Entertainment

Outdoor

Self-Organization

Shopping

Social_Media

System_OS

Warning

4,466 3,582 3,056 2,593 2,484 2,837 4,503 6,122 6,740 6,447 6,765 6,723 6,788 7,003 6,920 7,507 7,608 8,150 8,424 11,778 11,266 9,861 9,307 10,071

1,584 1,345 1,283 1,205 1,591 1,604 2,711 2,453 5,950 4,068 5,568 4,421 5,910 3,707 5,602 3,562 5,531 3,801 5,703 3,244 4,865 2,661 4,098 1,762

2,134 1,556 1,102 974 1,146 969 1,235 1,708 2,687 3,602 3,357 3,485 3,701 3,478 3,103 3,587 4,264 4,524 4,800 4,915 4,448 4,134 3,716 2,819

3,504 3,678 2,096 2,109 1,790 3,070 5,209 7,432 6,991 6,140 7,938 5,489 5,890 6,280 5,937 6,312 5,866 6,374 6,564 6,156 9,657 6,892 5,894 5,016

109,965 53,420 31,820 24,732 23,728 37,782 78,335 136,546 221,826 287,871 330,958 353,924 338,743 327,326 327,946 324,100 330,558 337,721 337,962 310,230 300,652 283,354 247,283 175,757

6,688 4,256 3,203 3,306 3,415 5,316 12,079 16,936 25,003 21,814 27,205 28,702 30,413 27,539 28,355 29,020 30,777 31,951 32,614 34,453 33,038 26,440 21,660 12,548

6,890 5,964 5,720 5,269 5,502 5,468 7,812 11,718 15,716 17,059 15,267 15,555 15,388 16,470 16,151 17,135 17,917 19,422 18,474 17,831 13,697 10,799 9,557 8,578

1,511 614 674 557 831 878 1,076 2,454 3,855 5,880 4,056 3,744 3,862 3,722 4,230 3,182 3,753 4,443 3,622 3,466 3,918 2,804 1,946 1,788

17,310 13,588 8,631 6,898 7,524 8,674 10,753 15,767 18,912 19,288 18,429 18,733 16,967 16,939 17,173 15,304 16,036 17,028 17,544 20,959 20,312 19,765 19,503 20,574

10,425 6,151 4,375 3,914 3,909 5,014 8,126 13,123 22,466 19,624 20,752 21,808 21,552 20,913 19,894 20,013 21,421 23,758 24,612 25,944 25,401 24,500 21,930 15,692

73,010 54,383 38,823 34,321 35,699 52,568 84,215 111,547 125,298 118,326 119,042 120,673 115,434 108,624 112,964 112,122 113,262 120,187 124,201 126,541 116,274 113,347 102,209 90,931

3,899 3,448 3,197 3,550 3,764 4,280 4,819 6,378 6,827 6,683 6,729 6,910 6,892 6,710 6,643 6,920 7,157 7,019 7,223 7,002 6,704 6,109 5,058 4,353

1×103

1×104

1×105

2×105

3×105

n
u
m

b
e
r 

o
f 

d
a
ta

 p
o
in

ts

Figure 1. Records of each app category in DS1 per time of day in hours.
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Figure 2. Median IDL of each app category in DS1 per time of day in hours.

To investigate the association between the mean and median IDL and the record count,
we calculated their z-scores. This allows for the comparison of different measures and a
better observation of fluctuations over time, as the z-scores indicate the difference between
a value and the mean in terms of standard deviations. The z-scores were grouped by time
of day in hours and are shown in Figure 3. This calculation enabled us to identify peaks
throughout the day, indicating times with above-average values and potentially high IDL
for new notifications, as well as periods with average or below-average IDL. The mean
and median IDL show opposing trends. The lowest z-score for the median IDL is at 2 a.m.,
while the highest z-score for the mean IDL is at 3 a.m. (see Figure 3, 1⃝). The third z-score
for the record count indicates that the number of notifications is below average during these
nighttimes. The number of notifications increases and is above average at around 7:30 a.m.
(see Figure 3, 2⃝). Although the median IDL also increases until 8 a.m. (see Figure 3, 3⃝),
the mean IDL decreases to a below-average value. After 8 p.m., the median IDL decreases
to an average value while the notification count increases until 11 a.m. (see Figure 3, 4⃝)
and remains a relatively stable above-average value until 6 p.m. (see Figure 3, 5⃝). Between
7:30 p.m. and 10:30 p.m., the median IDL and record count are below average, making it a
promising time for user notifications.
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Figure 3. Z-scores for the mean IDL (gray), median IDL (red), and the record count (orange) per time
of day in hours in DS1.

The bivariate analysis (see Table 3) revealed a significant difference in the IDL among
various app categories (p-value < 0.001). The smallest IDL was observed for Warning
notifications (mean = 2.71; median = 0.07), while the highest IDL was observed for Gaming
notifications with a median of 12.75 (mean = 64.1). The median interaction delays for the
Messaging, Outdoor, Shopping, and System_OS app categories were all less than one minute.

The Spearman correlation indicates a significant association between the time of day in
hours and the IDL, as well as between the battery level and the IDL (see Table 3). Although
the number of notifications between 12 and 5 a.m. was relatively small, the median IDL
during this period was the lowest, averaging 0.18 min. When examining the battery level,
it is evident that the IDL decreases as the battery level decreases. The mean IDL for low
battery levels is 13.41 with a median of 0.27, while the mean IDL for high battery levels is
19.53 with a median of 0.40. Most of the time, the smartphones were not charging (75%).
However, the device’s charging status is significantly associated with the IDL. When the
device is charging, the IDL tends to be smaller (mean = 14.93; median = 0.2) compared to
when it is not charging (mean = 17.04; median = 0.42). Figure 4 (red: charging = yes; gray:
charging = no) illustrates the difference between the two charging states, showing a steady
distance between the two median values for the IDL for each battery level.

All significant features from the bivariate analyses were included in the subsequent
multiple linear regression. The results, presented in Table 5, confirm the previous findings
that a higher battery level is associated with a higher IDL, while the IDL is smaller later in
the day. On average, the interaction delay decreases by 0.43 min for every additional hour
during the day. Additionally, an increase of 1% in battery results in an average delay increase
of 0.1 min. On average, the IDL differs depending on whether the smartphone is charging or
not by 2.8 min. Additionally, the app category is correlated with the IDL value. For instance,
notifications categorized as Warning have an IDL that is 8.9 min less than those categorized as
Messaging. The IDL of all other categories is higher compared to messaging.
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Table 5. Results of the linear regression for DS1, DS2, and DS3.

DS1 DS2 DS3
Beta SE p-Value 95% CI Beta SE p-Value 95% CI Beta SE p-Value 95% CI

Constant 11.03 0.09 <0.001 [10.86; 11.21] −2.22 0.15 <0.001 [−2.51; −1.92] −9.01 0.45 <0.001 [−9.90; −8.13]
Battery level 0.10 0.00 <0.001 [0.09; 0.10] 0.07 0.00 <0.001 [0.07; 0.08] 0.09 0.00 <0.001 [0.08; 0.09]

Charging
No Reference Reference Reference
Yes −2.80 0.05 <0.001 [−2.89; −2.70] −3.87 0.06 <0.001 [−3.99; −3.75] −3.88 0.07 <0.001 [−4.01; −3.75]

Time of day in hours −0.43 0.00 <0.001 [−0.44; −0.42] −0.41 0.01 <0.001 [−0.42; −0.41] −0.41 0.01 <0.001 [−0.43; −0.41]
App Category

Messaging Reference Reference Reference
Educational 17.90 0.17 <0.001 [17.57; 18.23] 14.79 0.21 <0.001 [14.39; 15.20] 13.33 0.22 <0.001 [12.90; 13.76]

Finance 20.34 0.23 <0.001 [19.89; 20.79] 8.74 0.29 <0.001 [8.17; 9.31] 6.09 0.29 <0.001 [5.52; 6.66]
Gaming 53.36 0.25 <0.001 [52.87; 53.85] 55.18 0.33 <0.001 [54.54; 55.83] 54.35 0.36 <0.001 [53.65; 55.06]

Health 28.21 0.18 <0.001 [27.85; 28.57] 28.00 0.22 <0.001 [27.56; 28.44] 25.62 0.23 <0.001 [25.16; 26.07]
News_Entertainment 44.79 0.10 <0.001 [44.59; 44.98] 41.95 0.12 <0.001 [41.72; 42.18] 49.67 0.16 <0.001 [49.37; 49.98]

Outdoor 5.87 0.12 <0.001 [5.63; 6.11] 4.31 0.14 <0.001 [4.03; 4.59] 1.24 0.15 <0.001 [0.95; 1.53]
Self-Organization 35.11 0.26 <0.001 [34.61; 35.62] 34.03 0.30 <0.001 [33.45; 34.61] 32.25 0.33 <0.001 [31.61; 32.90]

Shopping 12.66 0.11 <0.001 [12.44; 12.87] 12.46 0.13 <0.001 [12.20; 12.73] 11.34 0.15 <0.001 [11.05; 11.63]
Social_Media 40.22 0.11 <0.001 [40.01; 40.43] 33.82 0.13 <0.001 [33.56; 34.08] 30.81 0.15 <0.001 [30.53; 31.10]

System_OS 0.08 0.05 0.131 ‡ [−0.02; 0.18] 0.47 0.07 <0.001 [0.34; 0.60] 0.09 0.07 0.211 ‡ [−0.05; 0.23]
Warning −8.90 0.18 <0.001 [−9.26; −8.55] −9.48 0.22 <0.001 [−9.92; −9.05] −10.73 0.22 <0.001 [−11.15; −10.31]

Age NI 0.39 0.00 <0.001 [0.38; 0.39] 0.35 0.00 <0.001 [0.34; 0.35]
Sex

NIFemale Reference Reference
Male 0.58 0.08 <0.001 [0.43; 0.74] 1.83 0.09 <0.001 [1.67; 2.00]

BFI

NI NI

Openness 0.14 0.04 <0.001 [0.05; 0.22]
Conscientiousness 0.33 0.06 <0.001 [0.22; 0.44]

Extraversion 0.01 0.05 0.807 ‡ [−0.08; 0.11]
Agreeableness 0.38 0.06 <0.001 [0.26; 0.50]

Neuroticism 1.44 0.05 <0.001 [1.35; 1.54]
SE: Standard error. CI: Confidence Interval. NI: Not included in the regression model. ‡ Not significant.
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Figure 4. Median IDL for each battery level during charging and battery operation in DS1 (non-
stacked areas).

4.1. The Role of Sex and Age

For DS2, we recalculated the z-scores for the mean and median IDL, as well as for the
notification count. The distribution and results were comparable to those of DS1. Therefore,
the bivariate analyses of the factors already included in DS1 remained significant. The
distributions within the features did not differ much from those in DS1. In addition to the
analyses of DS1, we also included the association of sex and age with the IDL. Both the
t-test for sex and the Spearman correlation for age were significant, indicating that there are
statistically significant differences between their IDL means.

Since sex and age had a significant effect on IDL, we examined the app categories for de-
viations. Table 6, illustrates the findings for both sexes. Most app categories have comparable
IDLs for female and male users with only minor differences. However, the same app cate-
gories (e.g., News_Entertainment, Finance, and Gaming) showed considerable deviations, which
is due to the heterogeneous distribution of the data (see Table 6, SD). We also investigated in
the number of notifications per app category depending on age (see Figures 5 and 6). It was
found that younger individuals, particularly those aged 18 to 29, receive a higher number
of notifications for the app categories Messaging and Social_Media compared to older age
groups. Additionally, the number of notifications in the News_Entertainment category is also
higher among younger individuals than in other age groups. All age groups have similar
percentages of applications for communication, as shown in Figure 5. Some deviations, such
as the noticeably higher number of notifications in the categories of Finance and Health, are
particularly evident among individuals aged over 62.
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Figure 6. Number of notifications of female and male users for each app category in DS2.

Table 3 shows the differences between male and female users for the entire dataset.
Female users have a longer median reaction time to notifications (median = 0.43) compared
to male users (median = 0.33). Additionally, the average interaction delay increases with
age. In DS2, the mean IDL for the 18–29 age group and the 45–62 age group differs by
approximately 9 min. The median time differs slightly, with 0.30 min for the 18–29 age
group and 0.55 minutes for the 45–62 age group. The data indicate that 37.2% of the
sample belonged to the 18–29 age group, while 23.0% belonged to the 45–62 age group.
Furthermore, Figure 7 illustrates that the distribution of notifications during the day was
similar across all age groups. Additionally, the data reveal that individuals under the age
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of 45 receive more notifications at night. Especially for the age group of 45–62 years, there
is a clear decrease in the number of notifications at 10 p.m.

Table 6. IDL in minutes per app category & sex in DS2.

App Category Sex
IDL

Median Mean SD

Educational Female 9.75 29.75 78.30
Male 8.55 25.83 67.29

Finance Female 23.87 81.82 126.82
Male 0.08 17.63 73.57

Gaming Female 0.52 22.03 63.92
Male 16.37 70.36 134.15

Health Female 5.87 45.40 100.29
Male 4.20 37.85 100.39

Messaging Female 0.38 9.06 37.97
Male 0.32 9.70 42.30

News_Entertainment Female 5.42 33.26 88.65
Male 10.37 52.97 134.10

Outdoor Female 2.98 19.61 53.72
Male 0.12 14.74 55.21

Self-Organization Female 2.34 40.23 94.75
Male 7.52 46.98 110.24

Shopping Female 0.30 20.72 84.07
Male 0.33 22.70 85.33

Social_Media Female 5.55 47.09 102.30
Male 5.05 42.11 104.63

System_OS Female 0.23 8.10 43.18
Male 0.15 11.45 57.55

Warning Female 0.05 2.94 10.75
Male 0.07 1.73 16.29
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Figure 7. Number of notifications of each age group throughout the day in DS2 (stacked areas).

Figure 8 shows the median IDL in minutes for each age group throughout the day. The
age groups of 18–29 years and 30–44 years exhibited few differences, with the exception of a
peak at 7 a.m. in the 18–29 age group (see Figure 8, 2⃝). Additionally, the median IDL in the
18-29 age group only increases from 5 a.m. onward, in contrast to all other age groups (see
Figure 8, 1⃝). Users in the 45–62 age group show an increased median during nighttime and
especially in the morning compared to younger users. Figure 8 also showed multiple peaks
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for users above 62 years, having the largest peak at 6 a.m. Since we have only little data
for this age group, only 0.7% of DS2 to be precise (see Table 3), these peaks represent the
outliers of individual users rather than being representative. Therefore, we have depicted
the area of users over 62 years old transparently. As all features, including age and sex,
were significantly associated with IDL in this dataset, they were all included as explanatory
variables in the multiple linear regression. The regression results are comparable to those
of DS1. The battery level and time of day values are consistent with the regression model
for DS1. However, the charging value differs slightly (−3.87 compared to −2.80), while the
values of the different app categories deviate significantly from those in DS1 (e.g., Finance:
DS1: 20.34, DS2: 8.74). In addition to the previously mentioned variables, the newly added
factors of age and sex are also significantly associated with the IDL. On average, a person
who is one year older requires 0.39 more minutes to react to a notification. Additionally,
male users require more time to react than female users.
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Figure 8. Median interaction delay (IDL) of each age group throughout the day in DS2 (stacked
areas). Data of users older than 62 are presented transparently because only little data were available
(0.7% of DS2).

4.2. The Role of the Big Five Personality Traits

DS3 showed similar z-scores for the mean and median IDL, as well as a compara-
ble notification distribution throughout the day when compared to DS2. The Big Five
personality trait scores were also included in DS3, in addition to the factors included in
DS2. In the bivariate analysis, all Big Five personality traits (Openness, Conscientiousness,
Extraversion, Agreeableness, and Neuroticism) are significantly and positively related to the
IDL. This means that a higher score in these individual personality traits is associated with
a higher IDL. To examine the connection between these factors and the IDL, we used the
Spearman correlation. The measure resulted in a p-value < 0.001 for all five personality
traits, indicating statistical significance.

Individuals with higher scores in openness, conscientiousness, and neuroticism tend to
have less interaction delay compared to those with lower scores. For instance, those in the
top half of openness score have a median interaction delay of 0.28, while those in the bottom
half have a median interaction delay of 0.4. The median of both halves of the extraversion
score is identical. However, individuals with a score in the upper half of agreeableness
exhibit a higher interaction delay than those in the bottom half (median = 0.45 compared
to 0.25).

The multivariate regression model, which includes the Big Five personality features,
confirms the results of the bivariate analysis. All newly added variables, except for ex-
traversion, are significantly associated with IDL. On average, a one-point increase on the
neuroticism scale is linked to a 1.44 higher IDL, whereas a one-point increase in openness,
conscientiousness, and agreeableness raises the IDL by less than half a minute.
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5. Discussion

The analysis of the TYDR dataset showed that there is a significant dependency
between the IDL and the app category. In the case of the category Gaming, for example,
the difference in the mean IDL compared to the category Warning was over an hour
(63.36 min). A deviation of interaction times between app categories was also found in
the works [4,14,15]. In all works, the app category Messaging (called “Messenger” in [4,15]
and “SMS & IM” in [14]) also showed a lower interaction delay than the other categories.
This difference in behavior may indicate that users saw the notifications and intentionally
did not respond to them. Especially if users prioritize notification differently depending
on the app category. In [4], users are asked to give feedback on notifications and also
to prioritize them. It turns out that messenger apps were given the highest priority in
this study. Moreover, the interaction time (in [4] called “click time”) and the importance
of notifications showed a negative correlation and, therefore, confirms the results of our
analysis with regard to the app category.

The distribution of app categories is also similar to works [4,14,15]: the category of
messaging apps contains the most notification data. However, our work stands out from
other works because we extracted the number and difference in notifications per time of day
more precisely than, for example, ref. [15]. Moreover, we identified in all three datasets that
the IDL is above average in the morning hours (see Figure 3, 3⃝). A similar trend is shown
in a study of [25]: they found that highest number of notifications per hour are posted in
the morning, and the lowest at night and in the evening. Interestingly, their application
allowed users to snooze notifications and the highest number of snoozes per hour was also
in the morning. We therefore propose to schedule notifications in the evening, since our
data showed that both the amount of notifications and the median IDL is decreasing after
8 p.m. (see Figure 3, 6⃝, 7⃝). The results of the linear regression support this finding, as IDL
is negatively correlated with time of day and decreases throughout the day.

Using this insight, apps that require a short IDL (e.g., therapy apps that require an
action within a short time frame [9]) can optimize their notification scheduling. Especially,
when apps are using an alarm-based approach (see Section 2.2) to implement local push
notifications. This approach is generally more robust than remote push notifications,
because of the network restrictions that are part of the battery optimizations of current
Android operating system versions [36].

To further support the scheduling of future notifications, we calculated the z-scores
for the mean and median IDL as well as for the notification count. This supported our
understanding of the average IDL per hour. More precisely, using the mean z-score, we
were able to identify points in time with, on average, high or low IDL (see Figure 3, high:
1⃝; low: between 2⃝ and 7⃝). The same is the case for the median z-scores, which offered

us a better view on the average IDL with less dispersion due to outliers. Time points with
high median z-scores but only average mean z-scores (i.e., at these time points the IDL
was increased above average and this was not due to outliers) show intervals at which
no notification should be sent (see Figure 3, 3⃝). Combined with the third z-score for the
record count (i.e., the average amount of notifications), we could identify a time span with
low mean and median z-scores and thereby decreasing notification count (see Figure 3,
between 6⃝ and 7⃝). This indicates that the users were active and reacted very quickly at
these points in time. Furthermore, because of the decreasing notification count, users are
maybe more likely to perceive new notifications.

Looking at Table 5 and Figure 4, the charging state is also linked to the IDL. In Figure 4,
the continuous distance visualizes the existence of an influencing factor with respect to the
IDL. In case of the charging state, there are technical as well as behavioral reasons for this.
On the technical side, the absence of battery optimizations (as described in Section 2.2) has
a positive effect on the background execution of apps. Background services do not have to
wait for a maintenance window to receive and create push notifications. Another possible
reason could be the user’s behavior during the charging process. If the user charges their
smartphone at daytime or during their waking phase, the probability that the user will
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also use the smartphone is high. Interestingly, in Figure 4 1⃝, an increased IDL difference is
shown between 98% and 100% battery level. This difference might be caused by the fact
that after charging the smartphone, a user starts another activity (e.g., going to work). This
possible activity would match the increased IDL in the morning shown in Figure 8. It is
also possible that the user is more likely to charge the smartphone next to him/her or look
at the smartphone more often in order not to miss a notification. Because the OS does not
restrict any app’s request for resources during charging, an accumulation of interruptions
caused by notifications (apps no longer have to wait for the next maintenance window to
create or receive notifications) is also a possible reason for a lower IDL (see Section 2.2).

Demographic information about the user, especially age, was significantly associated
with the IDL. A comparable association between age and the notification interaction is
described in [26], where the authors developed an algorithm using machine learning
techniques to predict the likelihood of user interaction with a smartphone notification.
For their computation, they used a sample with similar age distribution (mean = 37.85;
std = 11.01) to our sample (DS2: mean = 35.04; std = 10.67). In contrast to their work, we
did not compute the likelihood of a user interaction, but tried to predict the difference in
time between displaying a notification in the notification bar and its removal. Consequently,
we also identified age as an important factor, but did not reproduce the positive correlation
between age and user interaction because all notifications without interaction were removed
from our dataset during data cleaning (see Section 3.2).

Another demographic information, the user’s sex, is associated with the IDL. Females
tend to have a slightly larger median IDL compared to males. On the other hand, the mean
IDL is slightly larger compared to males. These differences might be due to varying levels
of IDL within sex groups, as females show fewer outliers with respect to IDL. Another
possible reason is the unequal distribution of data between men and women (see Table 3).
Since according to [23], daily smartphone use for males is lower compared to females, this
difference in smartphone use could lead to a lower average IDL for females.

When we had a closer look at the Big Five personality traits, the regression analysis
showed that people who have a higher neuroticism score also have a higher IDL on average.
Neurotic people are defined as rather emotionally unstable, impulsive people, who tend to
get angry fast and perceive life negatively [37]. Other studies have found that neuroticism
is significantly positively related to higher smartphone [22] and social media usage [38] or
even to a smartphone addiction [39,40]. While more neurotic users use their phone more,
their IDL was higher. Even if someone has a higher smartphone usage, he/she does not
necessarily respond to notifications more quickly.

5.1. Implications for Notification Scheduling

The objective was to utilize minimal data, commonly available in most apps, to identify
patterns in the user’s smartphone interaction and facilitate intelligent notification planning.
These findings can be directly applied to the creation of intelligent notification systems.
Intelligent notification systems can utilize our results to calculate the expected IDL. We
would like to point out that the parameters for the planning algorithms are available at
different times. The app category, notification volume, and demographic data, such as
gender and age as well as the Big Five personality traits are examples of data that are known
prior to operation. They are suitable for calculating and defining individual tendencies for
notifications a priori. On the other hand, there are parameters that are only available to
the notification system during operation and are therefore suitable for ad hoc calculations.
These include, for example, the battery level or the state of charge. The time of day is a
parameter that can be used both for a priori calculations (e.g., to determine time periods)
and for ad hoc calculations.

The study showed that the number of notifications and the IDL are significantly
affected by the app category and time of day. Scheduled notifications for apps from
categories that are expected to have a higher IDL, according to our analysis, can use the
regression results to choose a more appropriate time to send notifications to the user,
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thereby reducing the IDL. For example, our analysis indicates to schedule notifications in
the evening, since our data showed that both the amount of notifications and the median
IDL decreases after 8 p.m.

Furthermore, the IDL is significantly influenced by the user’s age, gender, charging
state, and current battery level. Health apps can use user demographic data to personalize
notifications. For instance, older individuals, who typically have a higher IDL, could receive
scheduled notifications earlier to perform actions, such as data entry, within a certain time
interval. This is especially important in studies that use daily life methods, when a person’s
momentary state is to be recorded in a short time interval [9]. The same applies to gender,
as men tend to have a higher IDL. To support the development of intelligent notification
systems, developers are also encouraged to monitor the current battery level and state of
charge and integrate them into their calculations.

5.2. Limitations

In this work, the time between creation and removal of a notification from the notifica-
tion bar was measured to reflect user response time. As discussed earlier, users prioritize
notifications differently, suggesting an impact on IDL. Since this study used data from a
mobile crowdsensing app, real-world measurements were used for evaluation without
including the participants’ prioritization. The participants of the TYDR study (i.e., app
users) were not instructed to respond as quickly as possible, but rather real-world behavior
was measured. This results in a high external validity (a strength of mobile crowdsensing
research [5]), but at the cost of the internal validity. In other words, we cannot differentiate
whether a high IDL is caused by technical issues or the app user’s individual prioritization
of apps without the collection of more data (e.g., screen activation). To achieve this, there
are specialized tools to research both app and user behavior [10].

Another limitation of this study is the lack of more notification metadata in the TYDR
dataset. In newer Android versions, it is possible to get the reason of the notification
removal from the OS via the notification listener (see Section 3.1). This field returns an
encoded value with the information if, for example, the user or the app itself removed the
notification from the notification bar [41]. This information is important to further clean
the dataset and especially to implement an improved detection mechanism for permanent
notifications or progress indicators. In the present work, this information was not available,
so we could only process the data by making assumptions (see Section 3.2). In addition,
this would allow more detailed analytics on how the user interacts with the notifications
(e.g., click and dismiss rates for notifications per app category).

Thus, there is more dispersion in the data, which can be seen in Table 3 by the difference
between the arithmetic mean and the median as well as the standard deviation of the IDL.
In addition, knowing whether a notification was triggered locally or remotely would help
us better understand the impact of battery optimizations in Android smartphones. This
information could be used to improve the notification systems for services with a need for
a short IDL. Furthermore, in contrast to [27], we did not differentiate between individual
and group messages in our analysis of the app category Messenger.

Additionally, because we used real-world data, the number of the individual values
a variable can take on, diverges. For example, considerably more male than female users
are included in this analysis and, in contrast to the number of messaging notifications,
the number of Finance or Gaming notifications is rather small. We partially addressed this
issue by only including categories with a sufficient number of notifications and/or enough
unique users (more than 10, see Section 3.2).

The same applies with the age distribution of the users. The majority of notifications
was collected from users younger than 62 years. Only 0.7% of notifications in DS2 and
1.0% of notifications in DS3 can be assigned to users older than 62 years (see Table 3). In
Figure 7, the distribution of the data over the day is shown. Notifications from users older
than 62 years are colored in dark blue. Because these notifications are only a fraction of
the entire dataset, the gained information (e.g., IDL of age group > 62 in Figure 8) must be
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interpreted with caution. The influence of individual outliers is much more pronounced
with a small user base, so that the significance of the data is reduced.

In addition, we did not include users’ geographic or cultural origin in the analysis in
this study. The TYDR app was available worldwide on the Google Play Store and, therefore,
any cultural differences may be part of the dataset. An analysis of notifications for such
differences is part of future work.

Finally, we would like to note that this study only includes data from users with an
Android smartphone. Since interaction with operating systems may differ in terms of
notifications (e.g., due to different implementations of battery optimization features), the
results are not directly applicable to users of other operating systems, such as Apple’s iOS .

6. Conclusions

In this work, we presented a detailed study on smartphone notifications to iden-
tify influencing factors on the interaction delay. The used data are part of the TYDR
dataset and contains almost 10 million notifications that were collected in-the-wild from
922 unique users.

We found that the number of notification is significantly depending on the app category
and the time of the day. For example, the number of notifications created by the app
WhatsApp on its own accounts for 35% of the data, and showed a thirteen-fold increase
between 3 a.m. and 6 p.m. Furthermore, our comprehensive analysis of the temporal
difference between notification creation and removal in the notification bar showed a
significant negative association between the interaction delay and the time of day. In other
words, response time decreases over the course of the day. We thus propose to, if possible,
notify users in the evening between 8 and 11 p.m.

We used additional data provided by either the users (e.g., sex and age) or the device
(e.g, battery level) to identify more factors that possibly influence the interaction delay. Our
analysis showed a significant positive association between the interaction delay and the
battery level as well as age. In other words, younger users tend to interact faster, and app
users on fully charged devices exhibit a higher IDL than on devices with lower battery
levels. We also found that males tend to have higher interaction delays than females.

Since the majority of participants in our study were under the age of 62, and the
results for those over 62 were based on a smaller sample size, it would be beneficial to
conduct further studies, particularly with older participants. Additionally, it is possible
that other smartphone parameters provided to developers may impact user interaction.
The incorporation of the latter into the development of smart notification systems could
assist in tailoring the planning and ad hoc scheduling of survey and notification periods to
the user. This is particularly relevant in the case of ecological momentary assessment or
experience sampling apps.

We highly encourage researchers and developers to incorporate more information
about the user and the smartphone in their notification scheduling algorithms, since
additional factors like the Big Five personality traits or the devices’ charging state also
correlated with the interaction delay. In the pursuit for strategic notification planning, our
contribution can help to identify opportune moments for future user notifications.
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